Skip to main content

Advertisement

Log in

Genomics of Alzheimer’s disease implicates the innate and adaptive immune systems

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterised by cognitive impairment, behavioural alteration, and functional decline. Over 130 AD-associated susceptibility loci have been identified by genome-wide association studies (GWAS), while whole genome sequencing (WGS) and whole exome sequencing (WES) studies have identified AD-associated rare variants. These variants are enriched in APOE, TREM2, CR1, CD33, CLU, BIN1, CD2AP, PILRA, SCIMP, PICALM, SORL1, SPI1, RIN3, and more genes. Given that aging is the single largest risk factor for late-onset AD (LOAD), the accumulation of somatic mutations in the brain and blood of AD patients have also been explored. Collectively, these genetic findings implicate the role of innate and adaptive immunity in LOAD pathogenesis and suggest that a systemic failure of cell-mediated amyloid-β (Aβ) clearance contributes to AD onset and progression. AD-associated variants are particularly enriched in myeloid-specific regulatory regions, implying that AD risk variants are likely to perturbate the expression of myeloid-specific AD-associated genes to interfere Aβ clearance. Defective phagocytosis, endocytosis, and autophagy may drive Aβ accumulation, which may be related to naturally-occurring antibodies to Aβ (Nabs-Aβ) produced by adaptive responses. Passive immunisation is providing efficiency in clearing Aβ and slowing cognitive decline, such as aducanumab, donanemab, and lecanemab (ban2401). Causation of AD by impairment of the innate immunity and treatment using the tools of adaptive immunity is emerging as a new paradigm for AD, but immunotherapy that boosts the innate immune functions of myeloid cells is highly expected to modulate disease progression at asymptomatic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

All data analysed and summarised during this study were included in this article and its supplementary information files.

Notes

  1. www.Alzforum.org.

  2. www.genecards.org.

  3. https://www.alz.org/alzheimers-dementia/treatments/aducanumab.

  4. https://www.alzforum.org/therapeutics/donanemab.

  5. https://investor.lilly.com/news-releases/news-release-details/lillys-donanemab-receives-us-fdas-breakthrough-therapy.

  6. https://investors.biogen.com/news-releases/news-release-details/eisai-and-biogen-inc-announce-us-fda-grants-breakthrough-therapy.

Abbreviations

AD:

Alzheimer's disease

ADNI:

Alzheimer’s Disease Neuroimaging Initiative

ADSP:

Alzheimer’s Disease Sequencing Project

APC:

Antigen-presenting cells

APOE:

Apolipoprotein E

APP:

Amyloid precursor protein

ATAC-seq:

Transposase-accessible chromatin using sequencing

AUC:

Area under curve

Aβ:

β-Amyloid

1-40 :

Aβ ending in residue 40

1-42 :

Aβ ending in residue 42

BBB:

Blood–brain barrier

cDNA:

Complementary DNA

ChIP-seq:

Chromatin immunoprecipitation sequencing

CN:

Cognitively normal

CNS:

Central nervous system

CNV:

Copy number variants

CSF:

Cerebrospinal fluid

DAM:

Disease-associated microglia

DMT:

Disease-modifying treatments

DSB:

Double-strand breaks

EOAD:

Early-onset Alzheimer's disease

eQTL:

Expression quantitative trait loci

FDA:

Food and Drug Administration

GWAS:

Genome-wide association studies

GWAX:

Genome-wide association studies by proxy

HSV-1:

Herpes simplex virus type 1

INDEL:

Insertions and deletions

iPSC:

Induced pluripotent stem cells

IRM:

Interferon-responsive microglia

ISF:

Interstitial fluid

ITAM:

Immunoreceptor tyrosine‐based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

LD:

Linkage disequilibrium

LOAD:

Late-onset Alzheimer's disease

LOF:

Loss-of-function

MAF:

Minor allele frequency

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

MHC:

Major histocompatibility complex

NAbs-Aβ:

Naturally-occurring antibodies to β-amyloid

NFT:

Neurofibrillary tangles

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

OR:

Odds ratio

PET:

Positron emission tomography

PFC:

Prefrontal cortex

PI3K/Akt:

Phosphoinositide-3-kinase/Protein kinase B

PLAC-seq:

Proximity ligation-assisted ChIP-seq

PRR:

Pattern recognition receptors

PRS:

Polygenic risk score

PSEN1:

Presenilin 1

PSEN2:

Presenilin 2

p-tau:

Hyperphosphorylated tau

ROS:

Reactive oxygen species

sCR1:

Soluble CR1

scRNA-seq:

Single-cell RNA sequencing

SH2:

Src homology 2

Siglec:

Sialic acid-binding immunoglobulin-like lectin

SNP:

Single nucleotide polymorphisms

snRNA-seq:

Single-nucleus RNA sequencing

SNV:

Single nucleotide variants

SSB:

Single-strand breaks

sTREM2:

Soluble TREM2

TF:

Transcription factor

TGN:

Trans-Golgi network

TIR:

Toll/interleukin-1 receptor

TLR:

Toll-like receptors

UKB:

United Kingdom Biobank

VAF:

Variant allelic frequency

WES:

Whole-exome sequencing

WGS:

Whole-genome sequencing

References

  1. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE et al (2021) Alzheimer’s disease. Lancet 397(10284):1577–1590. https://doi.org/10.1016/s0140-6736(20)32205-4

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang CW, Shao E, Mucke L (2021) Tau: enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. https://doi.org/10.1126/science.abb8255

    Article  PubMed  PubMed Central  Google Scholar 

  4. McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431(9):1805–1817. https://doi.org/10.1016/j.jmb.2019.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12(6):719–732. https://doi.org/10.1016/j.jalz.2016.02.010

    Article  PubMed  Google Scholar 

  6. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472. https://doi.org/10.1083/jcb.201709069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24(2–3):167–176. https://doi.org/10.1016/j.ijdevneu.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  8. Phillips EC, Croft CL, Kurbatskaya K, O’Neill MJ, Hutton ML, Hanger DP et al (2014) Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans 42(5):1321–1325. https://doi.org/10.1042/BST20140155

    Article  CAS  PubMed  Google Scholar 

  9. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615. https://doi.org/10.1016/j.cell.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  11. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neuner SM, Tcw J, Goate AM (2020) Genetic architecture of Alzheimer’s disease. Neurobiol Dis 143:104976. https://doi.org/10.1016/j.nbd.2020.104976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sims R, Hill M, Williams J (2020) The multiplex model of the genetics of Alzheimer’s disease. Nat Neurosci 23(3):311–322. https://doi.org/10.1038/s41593-020-0599-5

    Article  CAS  PubMed  Google Scholar 

  14. Cacace R, Sleegers K, Van Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12(6):733–748. https://doi.org/10.1016/j.jalz.2016.01.012

    Article  PubMed  Google Scholar 

  15. Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619. https://doi.org/10.1074/jbc.R800019200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342(8873):697–699. https://doi.org/10.1016/0140-6736(93)91705-q

    Article  CAS  PubMed  Google Scholar 

  17. Saddiki H, Fayosse A, Cognat E, Sabia S, Engelborghs S, Wallon D et al (2020) Age and the association between apolipoprotein E genotype and Alzheimer disease: a cerebrospinal fluid biomarker-based case-control study. PLoS Med 17(8):e1003289. https://doi.org/10.1371/journal.pmed.1003289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrews SJ, Fulton-Howard B, Goate A (2020) Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol 19(4):326–335. https://doi.org/10.1016/S1474-4422(19)30435-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shen L, Jia J (2016) An overview of genome-wide association studies in Alzheimer’s disease. Neurosci Bull 32(2):183–190. https://doi.org/10.1007/s12264-016-0011-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093. https://doi.org/10.1038/ng.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099. https://doi.org/10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  22. Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67(12):1473–1484. https://doi.org/10.1001/archneurol.2010.201

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840. https://doi.org/10.1001/jama.2010.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441. https://doi.org/10.1038/ng.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. https://doi.org/10.1038/ng.803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Convergent genetic and expression data implicate immunity in Alzheimer's disease (2015). Alzheimers Dement 11(6):658–671. https://doi.org/10.1016/j.jalz.2014.05.1757

  28. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA et al (2018) Genetic identification of brain cell types underlying schizophrenia. Nat Genet 50(6):825–833. https://doi.org/10.1038/s41588-018-0129-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8(1):99. https://doi.org/10.1038/s41398-018-0150-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51(3):404–413. https://doi.org/10.1038/s41588-018-0311-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 51(3):414–430. https://doi.org/10.1038/s41588-019-0358-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N et al (2021) Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet 53(3):392–402. https://doi.org/10.1038/s41588-020-00776-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bellenguez C, Küçükali F, Jansen I, Andrade V, Moreno-Grau S, Amin N et al (2020) New insights on the genetic etiology of Alzheimer’s and related dementia. medRxiv. https://doi.org/10.1101/2020.10.01.20200659

    Article  Google Scholar 

  34. Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Rongve A et al (2020) Largest GWAS (N=1,126,563) of Alzheimer’s disease implicates microglia and immune cells. medRxiv. https://doi.org/10.1101/2020.11.20.20235275

    Article  Google Scholar 

  35. Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC et al (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21(1):108–117. https://doi.org/10.1038/mp.2015.23

    Article  CAS  PubMed  Google Scholar 

  36. Kang S, Gim J, Gunasekaran TI, Choi KY, Lee JJ, Seo EH et al (2021) APOE-stratified genome-wide association study suggests potential novel genes for late-onset Alzheimer’s disease in East-Asian descent. medRxiv. https://doi.org/10.1101/2020.07.02.20145557

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R et al (2019) Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366(6469):1134–1139. https://doi.org/10.1126/science.aay0793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi SW, Mak TS-H, O’Reilly PF (2020) Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc 15(9):2759–2772. https://doi.org/10.1038/s41596-020-0353-1

    Article  CAS  PubMed  Google Scholar 

  40. Escott-Price V, Shoai M, Pither R, Williams J, Hardy J (2017) Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease. Neurobiol Aging 49:214.e217-214.e211. https://doi.org/10.1016/j.neurobiolaging.2016.07.018

    Article  Google Scholar 

  41. Leonenko G, Sims R, Shoai M, Frizzati A, Bossù P, Spalletta G et al (2019) Polygenic risk and hazard scores for Alzheimer’s disease prediction. Ann Clin Transl Neurol 6(3):456–465. https://doi.org/10.1002/acn3.716

    Article  PubMed  PubMed Central  Google Scholar 

  42. Logue MW, Panizzon MS, Elman JA, Gillespie NA, Hatton SN, Gustavson DE et al (2019) Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Mol Psychiatry 24(3):421–430. https://doi.org/10.1038/s41380-018-0030-8

    Article  PubMed  Google Scholar 

  43. Zettergren A, Lord J, Ashton NJ, Benedet AL, Karikari TK, Lantero Rodriguez J et al (2021) Association between polygenic risk score of Alzheimer’s disease and plasma phosphorylated tau in individuals from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Res Therapy 13(1):17. https://doi.org/10.1186/s13195-020-00754-8

    Article  CAS  Google Scholar 

  44. Stocker H, Perna L, Weigl K, Möllers T, Schöttker B, Thomsen H et al (2020) Prediction of clinical diagnosis of Alzheimer’s disease, vascular, mixed, and all-cause dementia by a polygenic risk score and APOE status in a community-based cohort prospectively followed over 17 years. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0764-y

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J et al (2018) Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14(2):205–214. https://doi.org/10.1016/j.jalz.2017.08.013

    Article  PubMed  Google Scholar 

  46. Zhou X, Chen Y, Ip FCF, Lai NCH, Li YYT, Jiang Y et al (2020) Genetic and polygenic risk score analysis for Alzheimer’s disease in the Chinese population. Alzheimer’s Dement 12(1):e12074–e12074. https://doi.org/10.1002/dad2.12074

    Article  Google Scholar 

  47. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116. https://doi.org/10.1056/NEJMoa1211103

    Article  CAS  PubMed  Google Scholar 

  48. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. https://doi.org/10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  49. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R (2018) The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol 17(8):721–730. https://doi.org/10.1016/S1474-4422(18)30232-1

    Article  CAS  PubMed  Google Scholar 

  50. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23(21):5838–5846. https://doi.org/10.1093/hmg/ddu277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49(9):1373–1384. https://doi.org/10.1038/ng.3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q et al (2016) Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun 4(1):98. https://doi.org/10.1186/s40478-016-0367-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D et al (2015) TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener 10:19. https://doi.org/10.1186/s13024-015-0016-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang W, Jiao B, Xiao T, Liu X, Liao X, Xiao X et al (2020) Association of rare variants in neurodegenerative genes with familial Alzheimer’s disease. Ann Clin Transl Neurol 7(10):1985–1995. https://doi.org/10.1002/acn3.51197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177. https://doi.org/10.1038/ng1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campion D, Charbonnier C, Nicolas G (2019) SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data. Acta Neuropathol 138(2):173–186. https://doi.org/10.1007/s00401-019-01991-4

    Article  CAS  PubMed  Google Scholar 

  57. Pereira CD, Martins F, Wiltfang J, da Cruz ESOAB, Rebelo S (2018) ABC transporters are key players in Alzheimer’s disease. J Alzheimers Dis 61(2):463–485. https://doi.org/10.3233/JAD-170639

    Article  CAS  PubMed  Google Scholar 

  58. Sassi C, Nalls MA, Ridge PG, Gibbs JR, Ding J, Lupton MK et al (2016) ABCA7 p. G215S as potential protective factor for Alzheimer’s disease. Neurobiol Aging 46:235 e231-239. https://doi.org/10.1016/j.neurobiolaging.2016.04.004

    Article  CAS  Google Scholar 

  59. Beecham GW, Bis JC, Martin ER, Choi SH, DeStefano AL, van Duijn CM et al (2017) The Alzheimer’s Disease Sequencing Project: study design and sample selection. Neurology Genetics 3(5):e194. https://doi.org/10.1212/NXG.0000000000000194

    Article  PubMed  PubMed Central  Google Scholar 

  60. Raghavan NS, Brickman AM, Andrews H, Manly JJ, Schupf N, Lantigua R et al (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann Clin Transl Neurol 5(7):832–842. https://doi.org/10.1002/acn3.582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS et al (2020) Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry 25(8):1859–1875. https://doi.org/10.1038/s41380-018-0112-7

    Article  CAS  PubMed  Google Scholar 

  62. Fan KH, Feingold E, Rosenthal SL, Demirci FY, Ganguli M, Lopez OL et al (2020) Whole-exome sequencing analysis of Alzheimer’s disease in non-APOE*4 carriers. J Alzheimers Dis 76(4):1553–1565. https://doi.org/10.3233/JAD-200037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Curtis D, Bakaya K, Sharma L, Bandyopadhyay S (2020) Weighted burden analysis of exome-sequenced late-onset Alzheimer’s cases and controls provides further evidence for a role for PSEN1 and suggests involvement of the PI3K/Akt/GSK-3beta and WNT signalling pathways. Ann Hum Genet 84(3):291–302. https://doi.org/10.1111/ahg.12375

    Article  CAS  PubMed  Google Scholar 

  64. Holstege H, Hulsman M, Charbonnier C, Grenier-Boley B, Quenez O, Ahmad S et al (2020) Exome sequencing identifies three novel AD-associated genes. Alzheimers Dement 16(S2):e041592. https://doi.org/10.1002/alz.041592

    Article  Google Scholar 

  65. Beecham GW, Vardarajan B, Blue E, Bush W, Jaworski J, Barral S et al (2018) Rare genetic variation implicated in non-Hispanic white families with Alzheimer disease. Neurol Genet 4(6):e286. https://doi.org/10.1212/NXG.0000000000000286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vardarajan BN, Barral S, Jaworski J, Beecham GW, Blue E, Tosto G et al (2018) Whole genome sequencing of Caribbean Hispanic families with late-onset Alzheimer’s disease. Ann Clin Transl Neurol 5(4):406–417. https://doi.org/10.1002/acn3.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prokopenko D, Morgan SL, Mullin K, Hofmann O, Chapman B, Kirchner R et al (2021) Whole-genome sequencing reveals new Alzheimer’s disease-associated rare variants in loci related to synaptic function and neuronal development. Alzheimers Dement. https://doi.org/10.1002/alz.12319

    Article  PubMed  PubMed Central  Google Scholar 

  68. Leija-Salazar M, Piette C, Proukakis C (2018) Review: somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 44(3):267–285. https://doi.org/10.1111/nan.12465

    Article  CAS  PubMed  Google Scholar 

  69. Proukakis C (2020) Somatic mutations in neurodegeneration: an update. Neurobiol Dis 144:105021. https://doi.org/10.1016/j.nbd.2020.105021

    Article  CAS  PubMed  Google Scholar 

  70. Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14(5):307–320. https://doi.org/10.1038/nrg3424

    Article  CAS  PubMed  Google Scholar 

  71. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a025130

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lin X, Kapoor A, Gu Y, Chow MJ, Peng J, Zhao K et al (2020) Contributions of DNA damage to Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21051666

    Article  PubMed  PubMed Central  Google Scholar 

  73. McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I et al (2017) Intersection of diverse neuronal genomes and neuropsychiatric disease: the brain somatic mosaicism network. Science. https://doi.org/10.1126/science.aal1641

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94–98. https://doi.org/10.1126/science.aab1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359(6375):555–559. https://doi.org/10.1126/science.aao4426

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Nieto PE, Morrison AJ, Fraser HB (2019) The somatic mutation landscape of the human body. Genome Biol 20(1):298. https://doi.org/10.1186/s13059-019-1919-5

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beck JA, Poulter M, Campbell TA, Uphill JB, Adamson G, Geddes JF et al (2004) Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum Mol Genet 13(12):1219–1224. https://doi.org/10.1093/hmg/ddh134

    Article  CAS  PubMed  Google Scholar 

  78. Rovelet-Lecrux A, Charbonnier C, Wallon D, Nicolas G, Seaman MN, Pottier C et al (2015) De novo deleterious genetic variations target a biological network centered on Abeta peptide in early-onset Alzheimer disease. Mol Psychiatry 20(9):1046–1056. https://doi.org/10.1038/mp.2015.100

    Article  CAS  PubMed  Google Scholar 

  79. Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK et al (2015) Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. Elife. https://doi.org/10.7554/eLife.05116

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sala Frigerio C, Lau P, Troakes C, Deramecourt V, Gele P, Van Loo P et al (2015) On the identification of low allele frequency mosaic mutations in the brains of Alzheimer’s disease patients. Alzheimers Dement 11(11):1265–1276. https://doi.org/10.1016/j.jalz.2015.02.007

    Article  PubMed  Google Scholar 

  81. Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ et al (2018) Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563(7733):639–645. https://doi.org/10.1038/s41586-018-0718-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parcerisas A, Rubio SE, Muhaisen A, Gomez-Ramos A, Pujadas L, Puiggros M et al (2014) Somatic signature of brain-specific single nucleotide variations in sporadic Alzheimer’s disease. J Alzheimers Dis 42(4):1357–1382. https://doi.org/10.3233/JAD-140891

    Article  CAS  PubMed  Google Scholar 

  83. Wei W, Keogh MJ, Aryaman J, Golder Z, Kullar PJ, Wilson I et al (2019) Frequency and signature of somatic variants in 1461 human brain exomes. Genet Med 21(4):904–912. https://doi.org/10.1038/s41436-018-0274-3

    Article  CAS  PubMed  Google Scholar 

  84. Park JS, Lee J, Jung ES, Kim MH, Kim IB, Son H et al (2019) Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat Commun 10(1):3090. https://doi.org/10.1038/s41467-019-11000-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keogh MJ, Wei W, Aryaman J, Walker L, van den Ameele J, Coxhead J et al (2018) High prevalence of focal and multi-focal somatic genetic variants in the human brain. Nat Commun 9(1):4257. https://doi.org/10.1038/s41467-018-06331-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nicolas G, Acuna-Hidalgo R, Keogh MJ, Quenez O, Steehouwer M, Lelieveld S et al (2018) Somatic variants in autosomal dominant genes are a rare cause of sporadic Alzheimer’s disease. Alzheimers Dement 14(12):1632–1639. https://doi.org/10.1016/j.jalz.2018.06.3056

    Article  PubMed  PubMed Central  Google Scholar 

  87. Helgadottir HT, Lundin P, Wallen Arzt E, Lindstrom AK, Graff C, Eriksson M (2019) Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Hum Mol Genet 28(16):2675–2685. https://doi.org/10.1093/hmg/ddz085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lodato MA, Walsh CA (2019) Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum Mol Genet 28(R2):R197–R206. https://doi.org/10.1093/hmg/ddz191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470. https://doi.org/10.1038/nrneurol.2015.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20(8):1052–1061. https://doi.org/10.1038/nn.4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E et al (2020) Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to TAU pathology. EMBO Mol Med 12(3):e10606. https://doi.org/10.15252/emmm.201910606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pimenova AA, Herbinet M, Gupta I, Machlovi SI, Bowles KR, Marcora E et al (2021) Alzheimer’s-associated PU.1 expression levels regulate microglial inflammatory response. Neurobiol Dis 148:105217. https://doi.org/10.1016/j.nbd.2020.105217

    Article  CAS  PubMed  Google Scholar 

  93. Novikova G, Kapoor M, Tcw J, Abud EM, Efthymiou AG, Chen SX et al (2021) Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nat Commun 12(1):1610. https://doi.org/10.1038/s41467-021-21823-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ennerfelt HE, Lukens JR (2020) The role of innate immunity in Alzheimer’s disease. Immunol Rev 297(1):225–246. https://doi.org/10.1111/imr.12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Podlesny-Drabiniok A, Marcora E, Goate AM (2020) Microglial phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci 43(12):965–979. https://doi.org/10.1016/j.tins.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  96. Daily KP, Amer A (2020) Microglial autophagy-mediated clearance of amyloid-beta plaques is dysfunctional in Alzheimer’s disease mice. Alzheimers Dement 16(S3):e044120. https://doi.org/10.1002/alz.044120

    Article  Google Scholar 

  97. Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG et al (2018) Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00004

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hu J, Liu CC, Chen XF, Zhang YW, Xu H, Bu G (2015) Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Abeta metabolism in apoE4-targeted replacement mice. Mol Neurodegener 10(1):6. https://doi.org/10.1186/s13024-015-0001-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kober DL, Stuchell-Brereton MD, Kluender CE, Dean HB, Strickland MR, Steinberg DF et al (2021) Functional insights from biophysical study of TREM2 interactions with apoE and Aβ1-42. Alzheimers Dement 17(3):475–488. https://doi.org/10.1002/alz.12194

    Article  CAS  Google Scholar 

  100. Ulrich JD, Ulland TK, Mahan TE, Nystrom S, Nilsson KP, Song WM et al (2018) ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 215(4):1047–1058. https://doi.org/10.1084/jem.20171265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1141-1154 e1147. https://doi.org/10.1016/j.neuron.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeMattos RB, O’Dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 99(16):10843–10848. https://doi.org/10.1073/pnas.162228299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang F, Kumano M, Beraldi E, Fazli L, Du C, Moore S et al (2014) Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival. Nat Commun 5(1):5775. https://doi.org/10.1038/ncomms6775

    Article  CAS  PubMed  Google Scholar 

  104. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91(2):328–340. https://doi.org/10.1016/j.neuron.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  105. Zhao Y, Wu X, Li X, Jiang LL, Gui X, Liu Y et al (2018) TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 97(5):1023-1031.e1027. https://doi.org/10.1016/j.neuron.2018.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lessard CB, Malnik SL, Zhou Y, Ladd TB, Cruz PE, Ran Y et al (2018) High-affinity interactions and signal transduction between Aβ oligomers and TREM2. EMBO Mol Med. https://doi.org/10.15252/emmm.201809027

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nizami S, Hall-Roberts H, Warrier S, Cowley SA, Di Daniel E (2019) Microglial inflammation and phagocytosis in Alzheimer’s disease: potential therapeutic targets. Br J Pharmacol 176(18):3515–3532. https://doi.org/10.1111/bph.14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Al-Fadhel SZ, Al-Ghuraibawi NHA, Mohammed Ali DM, Al-Hakeim HK (2020) Serum cytokine dependent hematopoietic cell linker (CLNK) as a predictor for the duration of illness in type 2 diabetes mellitus. J Diabetes Metab Disord 19(2):959–966. https://doi.org/10.1007/s40200-020-00588-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S, Colonna M (2018) Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 215(3):745–760. https://doi.org/10.1084/jem.20171529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92(1):252–264. https://doi.org/10.1016/j.neuron.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  111. Kleineidam L, Chouraki V, Prochnicki T, van der Lee SJ, Madrid-Marquez L, Wagner-Thelen H et al (2020) PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathol 139(6):1025–1044. https://doi.org/10.1007/s00401-020-02138-6

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schlepckow K, Kleinberger G, Fukumori A, Feederle R, Lichtenthaler SF, Steiner H et al (2017) An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol Med 9(10):1356–1365. https://doi.org/10.15252/emmm.201707672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiang T, Hou JK, Gao Q, Yu JT, Zhou JS, Zhao HD et al (2016) TREM2 p.H157Y variant and the risk of Alzheimer’s disease: a meta-analysis involving 14,510 subjects. Curr Neurovasc Res 13(4):318–320. https://doi.org/10.2174/1567202613666160808095530

    Article  CAS  PubMed  Google Scholar 

  114. Li R, Wang X, He P (2021) The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer’s disease: a systematic review and meta-analysis. Exp Ther Med 21(4):347. https://doi.org/10.3892/etm.2021.9778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R et al (2019) The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aau2291

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhao L (2019) CD33 in Alzheimer’s disease - biology, pathogenesis, and therapeutics: a mini-review. Gerontology 65(4):323–331. https://doi.org/10.1159/000492596

    Article  CAS  PubMed  Google Scholar 

  117. Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St. Laurent CD et al (2021) The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. Mol Neurodegener 16(1):19. https://doi.org/10.1186/s13024-021-00443-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F, Jiang W et al (2017) The Alzheimer’s disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem 292(37):15312–15320. https://doi.org/10.1074/jbc.M117.799346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Salih DA, Bayram S, Guelfi S, Reynolds RH, Shoai M, Ryten M et al (2019) Genetic variability in response to amyloid beta deposition influences Alzheimer’s disease risk. Brain Commun 1(1):fcz022. https://doi.org/10.1093/braincomms/fcz022

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rathore N, Ramani SR, Pantua H, Payandeh J, Bhangale T, Wuster A et al (2018) Paired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet 14(11):e1007427. https://doi.org/10.1371/journal.pgen.1007427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Miller J, McKinnon L, Murcia JDG, Kauwe J, Ridge PG (2020) Synonymous variant rs2405442 in PILRA is associated with Alzheimer’s disease and affects RNA expression by destroying a ramp sequence. Alzheimers Dement 16(S3):e045988. https://doi.org/10.1002/alz.045988

    Article  Google Scholar 

  122. Agostini S, Costa AS, Mancuso R, Guerini FR, Nemni R, Clerici M (2019) The PILRA G78R variant correlates with higher HSV-1-specific IgG titers in Alzheimer’s disease. Cell Mol Neurobiol 39(8):1217–1221. https://doi.org/10.1007/s10571-019-00712-5

    Article  CAS  PubMed  Google Scholar 

  123. Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE, Mastroeni D et al (2016) Analysis of the putative role of CR1 in Alzheimer’s disease: genetic association, expression and function. PLoS ONE 11(2):e0149792. https://doi.org/10.1371/journal.pone.0149792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mahmoudi R, Kisserli A, Novella JL, Donvito B, Drame M, Reveil B et al (2015) Alzheimer’s disease is associated with low density of the long CR1 isoform. Neurobiol Aging 36(4):1766 e1765-1766 e1712. https://doi.org/10.1016/j.neurobiolaging.2015.01.006

    Article  CAS  Google Scholar 

  125. Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N et al (2012) Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17(2):223–233. https://doi.org/10.1038/mp.2011.24

    Article  CAS  PubMed  Google Scholar 

  126. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation. J Neurosci 29(38):11982–11992. https://doi.org/10.1523/JNEUROSCI.3158-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E et al (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391(3):147–149. https://doi.org/10.1016/j.neulet.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  128. Miron J, Picard C, Lafaille-Magnan M, Savard M, Labonté A, Breitner J et al (2019) Association of TLR4 with Alzheimer’s disease risk and presymptomatic biomarkers of inflammation. Alzheimers Dement 15(7):951–960. https://doi.org/10.1016/j.jalz.2019.03.012

    Article  PubMed  Google Scholar 

  129. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5(461):461. https://doi.org/10.3389/fimmu.2014.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Luo L, Curson JEB, Liu L, Wall AA, Tuladhar N, Lucas RM et al (2020) SCIMP is a universal Toll-like receptor adaptor in macrophages. J Leukoc Biol 107(2):251–262. https://doi.org/10.1002/JLB.2MA0819-138RR

    Article  CAS  PubMed  Google Scholar 

  131. Luo L, Bokil NJ, Wall AA, Kapetanovic R, Lansdaal NM, Marceline F et al (2017) SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun 8(1):14133. https://doi.org/10.1038/ncomms14133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cohen P, Strickson S (2017) The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 24(7):1153–1159. https://doi.org/10.1038/cdd.2017.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Beck TN, Nicolas E, Kopp MC, Golemis EA (2014) Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer’s disease. Oncoscience 1(7):486–503. https://doi.org/10.18632/oncoscience.64

    Article  PubMed  PubMed Central  Google Scholar 

  134. Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet 50(11):1584–1592. https://doi.org/10.1038/s41588-018-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Johnson ECB, Dammer EB, Duong DM, Yin L, Thambisetty M, Troncoso JC et al (2018) Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13(1):52. https://doi.org/10.1186/s13024-018-0282-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Conway OJ, Carrasquillo MM, Wang X, Bredenberg JM, Reddy JS, Strickland SL et al (2018) ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Mol Neurodegener 13(1):53. https://doi.org/10.1186/s13024-018-0289-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Satoh JI, Kino Y, Yanaizu M, Tosaki Y, Sakai K, Ishida T et al (2017) Microglia express ABI3 in the brains of Alzheimer’s disease and Nasu-Hakola disease. Intractable Rare Dis Res 6(4):262–268. https://doi.org/10.5582/irdr.2017.01073

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yasuda-Yamahara M, Rogg M, Frimmel J, Trachte P, Helmstaedter M, Schroder P et al (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol J Int Soc Matrix Biol 68–69:263–279. https://doi.org/10.1016/j.matbio.2018.01.003

    Article  CAS  Google Scholar 

  139. Frese S, Schubert WD, Findeis AC, Marquardt T, Roske YS, Stradal TE et al (2006) The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains. J Biol Chem 281(26):18236–18245. https://doi.org/10.1074/jbc.M512917200

    Article  CAS  PubMed  Google Scholar 

  140. Shen R, Zhao X, He L, Ding Y, Xu W, Lin S et al (2020) Upregulation of RIN3 induces endosomal dysfunction in Alzheimer’s disease. Transl Neurodegener 9(1):26. https://doi.org/10.1186/s40035-020-00206-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW et al (2017) Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med 9(1):100. https://doi.org/10.1186/s13073-017-0486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP et al (2018) AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 9(1):3958. https://doi.org/10.1038/s41467-018-06172-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cuajungco MP, Kiselyov K (2017) The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22:1330–1343. https://doi.org/10.2741/4546

    Article  CAS  Google Scholar 

  144. Kuil LE, Lopez Marti A, Carreras Mascaro A, van den Bosch JC, van den Berg P, van der Linde HC et al (2019) Hexb enzyme deficiency leads to lysosomal abnormalities in radial glia and microglia in zebrafish brain development. Glia 67(9):1705–1718. https://doi.org/10.1002/glia.23641

    Article  PubMed  PubMed Central  Google Scholar 

  145. Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G (2018) Worldwide distribution of common IDUA pathogenic variants. Clin Genet 94(1):95–102. https://doi.org/10.1111/cge.13224

    Article  CAS  PubMed  Google Scholar 

  146. Patel S, Homaei A, El-Seedi HR, Akhtar N (2018) Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 105:526–532. https://doi.org/10.1016/j.biopha.2018.05.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ruas M, Chuang KT, Davis LC, Al-Douri A, Tynan PW, Tunn R et al (2014) TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2. Mol Cell Biol 34(21):3981–3992. https://doi.org/10.1128/mcb.00113-14

    Article  PubMed  PubMed Central  Google Scholar 

  148. Feng T, Mai S, Roscoe JM, Sheng RR, Ullah M, Zhang J et al (2020) Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Rep 21(10):e50219. https://doi.org/10.15252/embr.202050219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mendsaikhan A, Tooyama I, Walker DG (2019) Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases. Cells. https://doi.org/10.3390/cells8030230

    Article  PubMed  PubMed Central  Google Scholar 

  150. Huai W, Liu X, Wang C, Zhang Y, Chen X, Chen X et al (2019) KAT8 selectively inhibits antiviral immunity by acetylating IRF3. J Exp Med 216(4):772–785. https://doi.org/10.1084/jem.20181773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dorrington MG, Fraser IDC (2019) NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal Integration. Front Immunol 10(705):705. https://doi.org/10.3389/fimmu.2019.00705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3-23. https://doi.org/10.1016/j.jaci.2009.12.980

    Article  PubMed  PubMed Central  Google Scholar 

  153. Das R, Chinnathambi S (2019) Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cell Mol Life Sci 76(19):3681–3694. https://doi.org/10.1007/s00018-019-03132-2

    Article  CAS  PubMed  Google Scholar 

  154. Raju S, Kometani K, Kurosaki T, Shaw AS, Egawa T (2018) The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathog 14(5):e1007053. https://doi.org/10.1371/journal.ppat.1007053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T et al (2011) SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol Cell Biol 31(22):4550–4562. https://doi.org/10.1128/MCB.05817-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu YH, Wang J, Li QX, Fowler CJ, Zeng F, Deng J et al (2021) Association of naturally occurring antibodies to beta-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer’s disease. Sci Adv. https://doi.org/10.1126/sciadv.abb0457

    Article  PubMed  PubMed Central  Google Scholar 

  157. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276-1290 e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  158. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173(5):1073–1081. https://doi.org/10.1016/j.cell.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  159. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(1):253-271 e256. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  160. Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, Huntley MA et al (2018) Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 22(3):832–847. https://doi.org/10.1016/j.celrep.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  161. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ et al (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570(7761):332–337. https://doi.org/10.1038/s41586-019-1195-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ et al (2020) Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 11(1):6129. https://doi.org/10.1038/s41467-020-19737-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Srinivasan K, Friedman BA, Etxeberria A, Huntley MA, van der Brug MP, Foreman O et al (2020) Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep 31(13):107843. https://doi.org/10.1016/j.celrep.2020.107843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Berchtold D, Priller J, Meisel C, Meisel A (2020) Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 30(6):1208–1218. https://doi.org/10.1111/bpa.12911

    Article  PubMed  PubMed Central  Google Scholar 

  165. Harms AS, Thome AD, Yan Z, Schonhoff AM, Williams GP, Li X et al (2018) Peripheral monocyte entry is required for alpha-synuclein induced inflammation and neurodegeneration in a model of Parkinson disease. Exp Neurol 300:179–187. https://doi.org/10.1016/j.expneurol.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  166. Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M et al (2021) Meningeal lymphatics affect microglia responses and anti-Abeta immunotherapy. Nature 593(7858):255–260. https://doi.org/10.1038/s41586-021-03489-0

    Article  CAS  PubMed  Google Scholar 

  167. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13(10):612–623. https://doi.org/10.1038/nrneurol.2017.111

    Article  CAS  PubMed  Google Scholar 

  168. Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, Ryten M et al (2016) Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann Clin Transl Neurol 3(12):924–933. https://doi.org/10.1002/acn3.369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tansey KE, Cameron D, Hill MJ (2018) Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med 10(1):14. https://doi.org/10.1186/s13073-018-0523-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4:2030. https://doi.org/10.1038/ncomms3030

    Article  CAS  PubMed  Google Scholar 

  171. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A et al (2005) Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 7(3):221–232. https://doi.org/10.3233/jad-2005-7304 (discussion 255-262)

    Article  CAS  PubMed  Google Scholar 

  172. Gu BJ, Huang X, Ou A, Rembach A, Fowler C, Avula PK et al (2016) Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease. Acta Neuropathol 132(3):377–389. https://doi.org/10.1007/s00401-016-1596-3

    Article  CAS  PubMed  Google Scholar 

  173. Darlington D, Li S, Hou H, Habib A, Tian J, Gao Y et al (2015) Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce amyloid-beta pathology in PSAPP mice. Cell Transpl 24(11):2237–2250. https://doi.org/10.3727/096368915X688894

    Article  Google Scholar 

  174. Bach JP, Dodel R (2012) Naturally occurring autoantibodies against β-Amyloid. Adv Exp Med Biol 750:91–99. https://doi.org/10.1007/978-1-4614-3461-0_7

    Article  CAS  PubMed  Google Scholar 

  175. van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 83(4):311–319. https://doi.org/10.1016/j.biopsych.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  176. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537(7618):50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  177. Salloway S, Farlow M, McDade E, Clifford DB, Wang G, Llibre-Guerra JJ et al (2021) A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med 27(7):1187–1196. https://doi.org/10.1038/s41591-021-01369-8

    Article  CAS  PubMed  Google Scholar 

  178. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW et al (2021) Donanemab in early Alzheimer’s disease. N Engl J Med 384(18):1691–1704. https://doi.org/10.1056/NEJMoa2100708

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were grateful to the University of Melbourne for providing open access to PubMed for literature reading.

Funding

This work was supported by the Melbourne Research Scholarship provided by the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, and Qiankang Life Science Melbourne R&D Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this review article.

Corresponding author

Correspondence to Ben J. Gu.

Ethics declarations

Conflict of interest

All authors declared no conflict of interests.

Ethics approval and consent to participate

No ethics approval was applicable to this work.

Consent for publication

All authors provided consent to the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 48 kb)

Supplementary file2 (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Laws, S.M., Miles, L.A. et al. Genomics of Alzheimer’s disease implicates the innate and adaptive immune systems. Cell. Mol. Life Sci. 78, 7397–7426 (2021). https://doi.org/10.1007/s00018-021-03986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03986-5

Keywords

Navigation