Skip to main content

Advertisement

Log in

The role of transthyretin in cell biology: impact on human pathophysiology

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transthyretin (TTR) is an extracellular protein mainly produced in the liver and choroid plexus, with a well-stablished role in the transport of thyroxin and retinol throughout the body and brain. TTR is prone to aggregation, as both wild-type and mutated forms of the protein can lead to the accumulation of amyloid deposits, resulting in a disease called TTR amyloidosis. Recently, novel activities for TTR in cell biology have emerged, ranging from neuronal health preservation in both central and peripheral nervous systems, to cellular fate determination, regulation of proliferation and metabolism. Here, we review the novel literature regarding TTR new cellular effects. We pinpoint TTR as major player on brain health and nerve biology, activities that might impact on nervous systems pathologies, and assign a new link between TTR and angiogenesis and cancer. We also explore the molecular mechanisms underlying TTR activities at the cellular level, and suggest that these might go beyond its most acknowledged carrier functions and include interaction with receptors and activation of intracellular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Kanda Y, Goodman DS, Canfield RE, Morgan FJ (1974) The amino acid sequence of human plasma prealbumin. J Biol Chem 249(21):6796–6805

    Article  CAS  PubMed  Google Scholar 

  2. Blake CC, Geisow MJ, Oatley SJ, Rerat B, Rerat C (1978) Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol 121(3):339–356. https://doi.org/10.1016/0022-2836(78)90368-6

    Article  CAS  PubMed  Google Scholar 

  3. Blake CC, Geisow MJ, Swan ID, Rerat C, Rerat B (1974) Structure of human plasma prealbumin at 2.5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J Mol Biol 88(1):1–12. https://doi.org/10.1016/0022-2836(74)90291-5

    Article  CAS  PubMed  Google Scholar 

  4. Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213):1039–1041. https://doi.org/10.1126/science.7754382

    Article  CAS  PubMed  Google Scholar 

  5. Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS (1985) Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J Biol Chem 260(21):11793–11798

    Article  CAS  PubMed  Google Scholar 

  6. Westermark GT, Westermark P (2008) Transthyretin and amyloid in the islets of Langerhans in type-2 diabetes. Exp Diabetes Res 2008:429274. https://doi.org/10.1155/2008/429274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawaji T, Ando Y, Nakamura M, Yamamoto K, Ando E, Takano A, Inomata Y, Hirata A, Tanihara H (2005) Transthyretin synthesis in rabbit ciliary pigment epithelium. Exp Eye Res 81(3):306–312. https://doi.org/10.1016/j.exer.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Cavallaro T, Martone RL, Dwork AJ, Schon EA, Herbert J (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthalmol Vis Sci 31(3):497–501

    CAS  PubMed  Google Scholar 

  9. Mizuno R, Cavallaro T, Herbert J (1992) Temporal expression of the transthyretin gene in the developing rat eye. Invest Ophthalmol Vis Sci 33(2):341–349

    CAS  PubMed  Google Scholar 

  10. Loughna S, Bennett P, Moore G (1995) Molecular analysis of the expression of transthyretin in intestine and liver from trisomy 18 fetuses. Hum Genet 95(1):89–95. https://doi.org/10.1007/bf00225081

    Article  CAS  PubMed  Google Scholar 

  11. Soprano DR, Soprano KJ, Goodman DS (1986) Retinol-binding protein and transthyretin mRNA levels in visceral yolk sac and liver during fetal development in the rat. Proc Natl Acad Sci U S A 83(19):7330–7334. https://doi.org/10.1073/pnas.83.19.7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blay P, Nilsson C, Owman C, Aldred A, Schreiber G (1993) Transthyretin expression in the rat brain: effect of thyroid functional state and role in thyroxine transport. Brain Res 632(1–2):114–120. https://doi.org/10.1016/0006-8993(93)91145-i

    Article  CAS  PubMed  Google Scholar 

  13. McKinnon B, Li H, Richard K, Mortimer R (2005) Synthesis of thyroid hormone binding proteins transthyretin and albumin by human trophoblast. J Clin Endocrinol Metab 90(12):6714–6720. https://doi.org/10.1210/jc.2005-0696

    Article  CAS  PubMed  Google Scholar 

  14. Murakami T, Sango K, Watabe K, Niimi N, Takaku S, Li Z, Yamamura K, Sunada Y (2015) Schwann cells contribute to neurodegeneration in transthyretin amyloidosis. J Neurochem 134(1):66–74. https://doi.org/10.1111/jnc.13068

    Article  CAS  PubMed  Google Scholar 

  15. Alshehri B, Pagnin M, Lee JY, Petratos S, Richardson SJ (2020) The role of transthyretin in oligodendrocyte development. Sci Rep 10(1):4189. https://doi.org/10.1038/s41598-020-60699-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murakami T, Ohsawa Y, Sunada Y (2008) The transthyretin gene is expressed in human and rodent dorsal root ganglia. Neurosci Lett 436(3):335–339. https://doi.org/10.1016/j.neulet.2008.03.063

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Masliah E, Reixach N, Buxbaum JN (2011) Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J Neurosci 31(35):12483–12490. https://doi.org/10.1523/JNEUROSCI.2417-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomes JR, Cabrito I, Soares HR, Costelha S, Teixeira A, Wittelsberger A, Stortelers C, Vanlandschoot P, Saraiva MJ (2018) Delivery of an anti-transthyretin nanobody to the brain through intranasal administration reveals transthyretin expression and secretion by motor neurons. J Neurochem 145(5):393–408. https://doi.org/10.1111/jnc.14332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G (2019) Identification of transthyretin as a novel interacting partner for the delta subunit of GABAA receptors. PLoS ONE 14(1):e0210094. https://doi.org/10.1371/journal.pone.0210094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Westermark P, Bergstrom J, Solomon A, Murphy C, Sletten K (2003) Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid 10(Suppl 1):48–54

    Article  CAS  PubMed  Google Scholar 

  21. Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10(3):160–184. https://doi.org/10.3109/13506120308998998

    Article  CAS  PubMed  Google Scholar 

  22. Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, Ciliberti P, Biagini E, Salvi F, Branzi A (2010) Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol 7(7):398–408. https://doi.org/10.1038/nrcardio.2010.67

    Article  CAS  PubMed  Google Scholar 

  23. Plante-Bordeneuve V, Said G (2011) Familial amyloid polyneuropathy. Lancet Neurol 10(12):1086–1097. https://doi.org/10.1016/S1474-4422(11)70246-0

    Article  CAS  PubMed  Google Scholar 

  24. Alshehri B, D’Souza DG, Lee JY, Petratos S, Richardson SJ (2015) The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 27(5):303–323. https://doi.org/10.1111/jne.12271

    Article  CAS  PubMed  Google Scholar 

  25. Bartalena L (1990) Recent achievements in studies on thyroid hormone-binding proteins. Endocr Rev 11(1):47–64. https://doi.org/10.1210/edrv-11-1-47

    Article  CAS  PubMed  Google Scholar 

  26. Chanoine JP, Braverman LE (1992) The role of transthyretin in the transport of thyroid hormone to cerebrospinal fluid and brain. Acta Med Austriaca 19(Suppl 1):25–28

    PubMed  Google Scholar 

  27. Goodman DS (1984) Vitamin A and retinoids in health and disease. N Engl J Med 310(16):1023–1031. https://doi.org/10.1056/NEJM198404193101605

    Article  CAS  PubMed  Google Scholar 

  28. Wolf G (1984) Multiple functions of vitamin A. Physiol Rev 64(3):873–937. https://doi.org/10.1152/physrev.1984.64.3.873

    Article  CAS  PubMed  Google Scholar 

  29. Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci U S A 90(6):2375–2379. https://doi.org/10.1073/pnas.90.6.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palha JA, Episkopou V, Maeda S, Shimada K, Gottesman ME, Saraiva MJ (1994) Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem 269(52):33135–33139

    Article  CAS  PubMed  Google Scholar 

  31. van Bennekum AM, Wei S, Gamble MV, Vogel S, Piantedosi R, Gottesman M, Episkopou V, Blaner WS (2001) Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J Biol Chem 276(2):1107–1113. https://doi.org/10.1074/jbc.M008091200

    Article  PubMed  Google Scholar 

  32. Richardson SJ (2007) Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol 258:137–193. https://doi.org/10.1016/S0074-7696(07)58003-4

    Article  CAS  PubMed  Google Scholar 

  33. Monk JA, Sims NA, Dziegielewska KM, Weiss RE, Ramsay RG, Richardson SJ (2013) Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab 304(1):E23-31. https://doi.org/10.1152/ajpendo.00216.2012

    Article  CAS  PubMed  Google Scholar 

  34. Sousa MM, Berglund L, Saraiva MJ (2000) Transthyretin in high density lipoproteins: association with apolipoprotein A-I. J Lipid Res 41(1):58–65

    Article  CAS  PubMed  Google Scholar 

  35. Liz MA, Faro CJ, Saraiva MJ, Sousa MM (2004) Transthyretin, a new cryptic protease. J Biol Chem 279(20):21431–21438. https://doi.org/10.1074/jbc.M402212200

    Article  CAS  PubMed  Google Scholar 

  36. Liz MA, Gomes CM, Saraiva MJ, Sousa MM (2007) ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. J Lipid Res 48(11):2385–2395. https://doi.org/10.1194/jlr.M700158-JLR200

    Article  CAS  PubMed  Google Scholar 

  37. Liz MA, Leite SC, Juliano L, Saraiva MJ, Damas AM, Bur D, Sousa MM (2012) Transthyretin is a metallopeptidase with an inducible active site. Biochem J 443(3):769–778. https://doi.org/10.1042/BJ20111690

    Article  CAS  PubMed  Google Scholar 

  38. Liz MA, Fleming CE, Nunes AF, Almeida MR, Mar FM, Choe Y, Craik CS, Powers JC, Bogyo M, Sousa MM (2009) Substrate specificity of transthyretin: identification of natural substrates in the nervous system. Biochem J 419(2):467–474. https://doi.org/10.1042/BJ20082090

    Article  CAS  PubMed  Google Scholar 

  39. Costa R, Ferreira-da-Silva F, Saraiva MJ, Cardoso I (2008) Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS ONE 3(8):e2899. https://doi.org/10.1371/journal.pone.0002899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Costa R, Goncalves A, Saraiva MJ, Cardoso I (2008) Transthyretin binding to A-Beta peptide–impact on A-Beta fibrillogenesis and toxicity. FEBS Lett 582(6):936–942. https://doi.org/10.1016/j.febslet.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  41. Silva CS, Eira J, Ribeiro CA, Oliveira A, Sousa MM, Cardoso I, Liz MA (2017) Transthyretin neuroprotection in Alzheimer’s disease is dependent on proteolysis. Neurobiol Aging 59:10–14. https://doi.org/10.1016/j.neurobiolaging.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  42. Alemi M, Gaiteiro C, Ribeiro CA, Santos LM, Gomes JR, Oliveira SM, Couraud PO, Weksler B, Romero I, Saraiva MJ, Cardoso I (2016) Transthyretin participates in beta-amyloid transport from the brain to the liver–involvement of the low-density lipoprotein receptor-related protein 1? Sci Rep 6:20164. https://doi.org/10.1038/srep20164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liz MA, Mar FM, Franquinho F, Sousa MM (2010) Aboard transthyretin: from transport to cleavage. IUBMB Life 62(6):429–435. https://doi.org/10.1002/iub.340

    Article  CAS  PubMed  Google Scholar 

  44. Fleming CE, Saraiva MJ, Sousa MM (2007) Transthyretin enhances nerve regeneration. J Neurochem 103(2):831–839. https://doi.org/10.1111/j.1471-4159.2007.04828.x

    Article  CAS  PubMed  Google Scholar 

  45. Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T (2008) Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A 105(7):2681–2686. https://doi.org/10.1073/pnas.0712197105

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oliveira SM, Ribeiro CA, Cardoso I, Saraiva MJ (2011) Gender-dependent transthyretin modulation of brain amyloid-beta levels: evidence from a mouse model of Alzheimer’s disease. J Alzheimers Dis 27(2):429–439. https://doi.org/10.3233/JAD-2011-110488

    Article  CAS  PubMed  Google Scholar 

  47. Gomes JR, Nogueira RS, Vieira M, Santos SD, Ferraz-Nogueira JP, Relvas JB, Saraiva MJ (2016) Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ 23(11):1749–1764. https://doi.org/10.1038/cdd.2016.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saraiva MJ, Magalhaes J, Ferreira N, Almeida MR (2012) Transthyretin deposition in familial amyloidotic polyneuropathy. Curr Med Chem 19(15):2304–2311. https://doi.org/10.2174/092986712800269236

    Article  CAS  PubMed  Google Scholar 

  49. Sousa MM, Saraiva MJ (2003) Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling. Prog Neurobiol 71(5):385–400. https://doi.org/10.1016/j.pneurobio.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  50. Sousa MM, Saraiva MJ (2008) Transthyretin is not expressed by dorsal root ganglia cells. Exp Neurol 214(2):362–365. https://doi.org/10.1016/j.expneurol.2008.08.019

    Article  CAS  PubMed  Google Scholar 

  51. Fleming CE, Mar FM, Franquinho F, Saraiva MJ, Sousa MM (2009) Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci 29(10):3220–3232. https://doi.org/10.1523/JNEUROSCI.6012-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santos SD, Lambertsen KL, Clausen BH, Akinc A, Alvarez R, Finsen B, Saraiva MJ (2010) CSF transthyretin neuroprotection in a mouse model of brain ischemia. J Neurochem 115(6):1434–1444. https://doi.org/10.1111/j.1471-4159.2010.07047.x

    Article  CAS  PubMed  Google Scholar 

  53. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH Jr, Bowser R (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95(5):1461–1471. https://doi.org/10.1111/j.1471-4159.2005.03478.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gomes JR, Lobo A, Nogueira R, Terceiro AF, Costelha S, Lopes IM, Magalhaes A, Summavielle T, Saraiva MJ (2020) Neuronal megalin mediates synaptic plasticity-a novel mechanism underlying intellectual disabilities in megalin gene pathologies. Brain Commun. https://doi.org/10.1093/braincomms/fcaa135

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vieira M, Gomes JR, Saraiva MJ (2015) Transthyretin induces insulin-like growth factor i nuclear translocation regulating its levels in the hippocampus. Mol Neurobiol 51(3):1468–1479. https://doi.org/10.1007/s12035-014-8824-4

    Article  CAS  PubMed  Google Scholar 

  56. Vieira M, Leal SS, Gomes CM, Saraiva MJ (2016) Evidence for synergistic action of transthyretin and IGF-I over the IGF-I receptor. Biochim Biophys Acta 1862:797–804. https://doi.org/10.1016/j.bbadis.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  57. Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70(6):443–462. https://doi.org/10.1016/j.pneurobio.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  58. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8(12):1390–1397. https://doi.org/10.1038/nm1202-793

    Article  CAS  PubMed  Google Scholar 

  59. Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719. https://doi.org/10.1016/j.neuron.2008.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7. https://doi.org/10.1186/1749-8104-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nieto-Estevez V, Defterali C, Vicario-Abejon C (2016) IGF-I: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci 10:52. https://doi.org/10.3389/fnins.2016.00052

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9(5):331–343. https://doi.org/10.1038/nrn2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA (2007) Transthyretin influences spatial reference memory. Neurobiol Learn Mem 88(3):381–385. https://doi.org/10.1016/j.nlm.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  64. Brouillette J, Quirion R (2008) Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 29(11):1721–1732. https://doi.org/10.1016/j.neurobiolaging.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  65. Vancamp P, Gothie JD, Luongo C, Sebillot A, Le Blay K, Butruille L, Pagnin M, Richardson SJ, Demeneix BA, Remaud S (2019) Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci Rep 9(1):19689. https://doi.org/10.1038/s41598-019-56156-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521. https://doi.org/10.1523/JNEUROSCI.3521-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishii A, Furusho M, Dupree JL, Bansal R (2016) Strength of ERK1/2 MAPK activation determines its effect on myelin and axonal integrity in the adult CNS. J Neurosci 36(24):6471–6487. https://doi.org/10.1523/JNEUROSCI.0299-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Avila RL, Kirschner DA, Macklin WB (2008) Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 28(28):7174–7183. https://doi.org/10.1523/JNEUROSCI.0150-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ishii A, Furusho M, Dupree JL, Bansal R (2014) Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J Neurosci 34(48):16031–16045. https://doi.org/10.1523/JNEUROSCI.3360-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vieira M, Saraiva MJ (2013) Transthyretin regulates hippocampal 14–3-3zeta protein levels. FEBS Lett 587(10):1482–1488. https://doi.org/10.1016/j.febslet.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  71. Toyo-oka K, Wachi T, Hunt RF, Baraban SC, Taya S, Ramshaw H, Kaibuchi K, Schwarz QP, Lopez AF, Wynshaw-Boris A (2014) 14-3-3epsilon and zeta regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci 34(36):12168–12181. https://doi.org/10.1523/JNEUROSCI.2513-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M (2021) Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol 61:100901. https://doi.org/10.1016/j.yfrne.2021.100901

    Article  CAS  PubMed  Google Scholar 

  73. Sousa JC, Grandela C, Fernandez-Ruiz J, de Miguel R, de Sousa L, Magalhaes AI, Saraiva MJ, Sousa N, Palha JA (2004) Transthyretin is involved in depression-like behaviour and exploratory activity. J Neurochem 88(5):1052–1058. https://doi.org/10.1046/j.1471-4159.2003.02309.x

    Article  CAS  PubMed  Google Scholar 

  74. Nunes RJ, de Oliveira P, Lages A, Becker JD, Marcelino P, Barroso E, Perdigoto R, Kelly JW, Quintas A, Santos SC (2013) Transthyretin proteins regulate angiogenesis by conferring different molecular identities to endothelial cells. J Biol Chem 288(44):31752–31760. https://doi.org/10.1074/jbc.M113.469858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee CC, Ding X, Zhao T, Wu L, Perkins S, Du H, Yan C (2019) Transthyretin stimulates tumor growth through regulation of tumor, immune, and endothelial cells. J Immunol 202(3):991–1002. https://doi.org/10.4049/jimmunol.1800736

    Article  CAS  PubMed  Google Scholar 

  76. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3(2):65–71

    CAS  PubMed  Google Scholar 

  77. Longo Alves I, Hays MT, Saraiva MJ (1997) Comparative stability and clearance of [Met30]transthyretin and [Met119]transthyretin. Eur J Biochem 249(3):662–668. https://doi.org/10.1111/j.1432-1033.1997.00662.x

    Article  CAS  PubMed  Google Scholar 

  78. Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J (2017) Myeloid cells in the central nervous system. Immunity 46(6):943–956. https://doi.org/10.1016/j.immuni.2017.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding H, Liu J, Xue R, Zhao P, Qin Y, Zheng F, Sun X (2014) Transthyretin as a potential biomarker for the differential diagnosis between lung cancer and lung infection. Biomed Rep 2(5):765–769. https://doi.org/10.3892/br.2014.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng X, Chen S, Li L, Liu X, Liu X, Dai S, Zhang P, Lu H, Lin Z, Yu Y, Li G (2018) Evaluation of HE4 and TTR for diagnosis of ovarian cancer: comparison with CA-125. J Gynecol Obstet Hum Reprod 47(6):227–230. https://doi.org/10.1016/j.jogoh.2018.03.010

    Article  PubMed  Google Scholar 

  81. Hao S, Sun S, Xiao X, He D, Liu L (2016) Selective expression of transthyretin in subtypes of lung cancer. J Mol Histol 47(3):239–247. https://doi.org/10.1007/s10735-016-9666-3

    Article  CAS  PubMed  Google Scholar 

  82. Ingenbleek Y (2009) Why should plasma transthyretin become a routine screening tool in elderly persons? J Nutr Health Aging 13(7):640–642. https://doi.org/10.1007/s12603-009-0175-x

    Article  CAS  PubMed  Google Scholar 

  83. Ingenbleek Y, Bernstein LH (2015) Plasma transthyretin as a biomarker of lean body mass and catabolic states. Adv Nutr 6(5):572–580. https://doi.org/10.3945/an.115.008508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zawislak A, Jakimowicz P, McCubrey JA, Rakus D (2017) Neuron-derived transthyretin modulates astrocytic glycolysis in hormone-independent manner. Oncotarget 8(63):106625–106638. https://doi.org/10.18632/oncotarget.22542

    Article  PubMed  PubMed Central  Google Scholar 

  85. Werner H (2012) Tumor suppressors govern insulin-like growth factor signaling pathways: implications in metabolism and cancer. Oncogene 31(22):2703–2714. https://doi.org/10.1038/onc.2011.447

    Article  CAS  PubMed  Google Scholar 

  86. Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13(7):663–669. https://doi.org/10.2174/138161207780249146

    Article  CAS  PubMed  Google Scholar 

  87. Rich LR, Harris W, Brown AM (2019) The role of brain glycogen in supporting physiological function. Front Neurosci 13:1176. https://doi.org/10.3389/fnins.2019.01176

    Article  PubMed  PubMed Central  Google Scholar 

  88. Trigo D, Nadais A, da Cruz ESOAB (2019) Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res Rev 51:67–77. https://doi.org/10.1016/j.arr.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  89. Sousa MM, Yan SD, Stern D, Saraiva MJ (2000) Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab Invest 80(7):1101–1110. https://doi.org/10.1038/labinvest.3780116

    Article  CAS  PubMed  Google Scholar 

  90. Teixeira PF, Cerca F, Santos SD, Saraiva MJ (2006) Endoplasmic reticulum stress associated with extracellular aggregates. Evidence from transthyretin deposition in familial amyloid polyneuropathy. J Biol Chem 281(31):21998–22003. https://doi.org/10.1074/jbc.M602302200

    Article  CAS  PubMed  Google Scholar 

  91. Santos SD, Cardoso I, Magalhaes J, Saraiva MJ (2007) Impairment of the ubiquitin-proteasome system associated with extracellular transthyretin aggregates in familial amyloidotic polyneuropathy. J Pathol 213(2):200–209. https://doi.org/10.1002/path.2224

    Article  CAS  PubMed  Google Scholar 

  92. Macedo B, Batista AR, do Amaral JB, Saraiva MJ, (2007) Biomarkers in the assessment of therapies for familial amyloidotic polyneuropathy. Mol Med 13(11–12):584–591. https://doi.org/10.2119/2007-00068.Macedo

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Azevedo EP, Guimaraes-Costa AB, Bandeira-Melo C, Chimelli L, Waddington-Cruz M, Saraiva EM, Palhano FL, Foguel D (2019) Inflammatory profiling of patients with familial amyloid polyneuropathy. BMC Neurol 19(1):146. https://doi.org/10.1186/s12883-019-1369-4

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ (2001) Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci 21(19):7576–7586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fong VH, Vieira A (2013) Pro-oxidative effects of aggregated transthyretin in human schwannoma cells. Neurotoxicology 39:109–113. https://doi.org/10.1016/j.neuro.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  96. Fong VH, Vieira A (2013) Transthyretin aggregates induce production of reactive nitrogen species. Neurodegener Dis 11(1):42–48. https://doi.org/10.1159/000338153

    Article  CAS  PubMed  Google Scholar 

  97. Macedo B, Magalhaes J, Batista AR, Saraiva MJ (2010) Carvedilol treatment reduces transthyretin deposition in a familial amyloidotic polyneuropathy mouse model. Pharmacol Res 62(6):514–522. https://doi.org/10.1016/j.phrs.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  98. M IOdS, Lopes CS, Liz MA, (2020) Transthyretin interacts with actin regulators in a Drosophila model of familial amyloid polyneuropathy. Sci Rep 10(1):13596. https://doi.org/10.1038/s41598-020-70377-4

    Article  CAS  Google Scholar 

  99. DeGeer J, Lamarche-Vane N (2013) Rho GTPases in neurodegeneration diseases. Exp Cell Res 319(15):2384–2394. https://doi.org/10.1016/j.yexcr.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  100. Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119(Pt 22):4589–4598. https://doi.org/10.1242/jcs.03247

    Article  CAS  PubMed  Google Scholar 

  101. Fong VH, Wong S, Vieira A (2017) Disruption of endocytic transport by transthyretin aggregates. Int J Biochem Cell Biol 85:102–105. https://doi.org/10.1016/j.biocel.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  102. Gasperini RJ, Hou X, Parkington H, Coleman H, Klaver DW, Vincent AJ, Foa LC, Small DH (2011) TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons. Mol Neurodegener 6(1):19. https://doi.org/10.1186/1750-1326-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M (2016) Biochemical and electrophysiological modification of amyloid transthyretin on cardiomyocytes. Biophys J 111(9):2024–2038. https://doi.org/10.1016/j.bpj.2016.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Goncalves NP, Costelha S, Saraiva MJ (2014) Glial cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2:177. https://doi.org/10.1186/s40478-014-0177-8

    Article  PubMed  PubMed Central  Google Scholar 

  105. Koike H, Ikeda S, Takahashi M, Kawagashira Y, Iijima M, Misumi Y, Ando Y, Ikeda SI, Katsuno M, Sobue G (2016) Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy. Neurology 87(21):2220–2229. https://doi.org/10.1212/WNL.0000000000003362

    Article  CAS  PubMed  Google Scholar 

  106. Prior R, Van Helleputte L, Benoy V, Van Den Bosch L (2017) Defective axonal transport: a common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 105:300–320. https://doi.org/10.1016/j.nbd.2017.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors were supported by the FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação Para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01–0145-FEDER-028336 (PTDC/MED-NEU/28336/2017). JE is a FCT fellow (SFRH/BD/116343/2016), JM is a research scientist under the project PTDC/MED-NEU/28336/2017. MAL is a FCT Investigator (IF/00902/2015).

Author information

Authors and Affiliations

Authors

Contributions

JM and JE performed the literature search and wrote the manuscript. JM and MAL conceived the structure and content. MAL critically revised the work.

Corresponding author

Correspondence to Márcia Almeida Liz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors contributed to the article and approved the submitted version.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, J., Eira, J. & Liz, M.A. The role of transthyretin in cell biology: impact on human pathophysiology. Cell. Mol. Life Sci. 78, 6105–6117 (2021). https://doi.org/10.1007/s00018-021-03899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03899-3

Keywords

Navigation