Skip to main content

Advertisement

Log in

Interplay between HMGA and TP53 in cell cycle control along tumor progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7(12):899–910

    Article  CAS  PubMed  Google Scholar 

  2. Ozturk N, Singh I, Mehta A, Braun T, Barreto G (2014) HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vignali R, Marracci S (2020) HMGA genes and proteins in development and evolution. Int J Mol Sci 21(2):1–39

    Article  CAS  Google Scholar 

  4. Yang K, Guo W, Ren T, Huang Y, Han Y, Zhang H et al (2019) Knockdown of HMGA2 regulates the level of autophagy via interactions between MSI2 and Beclin1 to inhibit NF1-associated malignant peripheral nerve sheath tumour growth. J Exp Clin Cancer Res 38(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colombo DF, Burger L, Baubec T, Schübeler D (2017) Binding of high mobility group A proteins to the mammalian genome occurs as a function of AT-content. PLoS Genet 13(12):e1007102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thanos D, Maniatis T (1992) The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71(5):777–789

    Article  CAS  PubMed  Google Scholar 

  7. Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U et al (2012) CBX7 is a tumor suppressor in mice and humans. J Clin Invest 122(2):612–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Battista S, Fedele M, Martinez Hoyos J, Pentimalli F, Pierantoni GM, Visone R et al (2005) High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochem J 389:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S et al (2006) HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9(6):459–471

    Article  CAS  PubMed  Google Scholar 

  10. Cao XP, Cao Y, Zhao H, Yin J, Hou P (2019) HMGA1 promoting gastric cancer oncogenic and glycolytic phenotypes by regulating c-myc expression. Biochem Biophys Res Commun 516(2):457–465

    Article  CAS  PubMed  Google Scholar 

  11. Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C et al (2003) Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol 23(24):9104–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Wang Y (2010) HMG modifications and nuclear function. Biochim Biophys Acta 1799(1–2):28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sgarra R, Diana F, Rustighi A, Manfioletti G, Giancotti V (2003) Increase of HMGA1a protein methylation is a distinctive characteristic of leukaemic cells induced to undergo apoptosis. Cell Death Differ 10(3):386–389

    Article  CAS  PubMed  Google Scholar 

  14. Sgarra R, Diana F, Bellarosa C, Dekleva V, Rustighi A, Toller M et al (2003) During apoptosis of tumor cells HMGA1a protein undergoes methylation: identification of the modification site by mass spectrometry. Biochemistry 42(12):3575–3585

    Article  CAS  PubMed  Google Scholar 

  15. Foti D, Chiefari E, Fedele M, Iuliano R, Brunetti L, Paonessa F, Manfioletti G, Barbetti F, Brunetti A, Croce CM, Fusco A, Brunetti A (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med 11(7):765–773

    Article  CAS  PubMed  Google Scholar 

  16. Anand A, Chada K (2000) In vivo modulation of Hmgic reduces obesity. Nat Genet 24(4):377–380

    Article  CAS  PubMed  Google Scholar 

  17. Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A et al (2014) Hmga1/Hmga2 double knock-out mice display a “superpygmy” phenotype. Biol Open 3(5):372–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pallante P, Sepe R, Puca F, Fusco A (2015) High mobility group A proteins as tumor markers. Front Med (Lausanne) 2:15–22

    Google Scholar 

  19. Wang X, Liu X, Li AY, Chen L, Lai L, Lin HH et al (2011) Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res 17(8):2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berlingieri MT, Pierantoni GM, Giancotti V, Santoro M, Fusco A (2002) Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene 21(19):2971–2980

    Article  CAS  PubMed  Google Scholar 

  21. Arlotta P, Tai AK, Manfioletti G, Clifford C, Jay G, Ono SJ (2000) Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J Biol Chem 275(19):14394–14400

    Article  CAS  PubMed  Google Scholar 

  22. Baldassarre G, Fedele M, Battista S, Vecchione A, Klein-Szanto AJ, Santoro M et al (2001) Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proc Natl Acad Sci USA 98(14):7970–7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu Y, Sumter TF, Bhattacharya R, Tesfaye A, Fuchs EJ, Wood LJ et al (2004) The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res 64(10):3371–3375

    Article  CAS  PubMed  Google Scholar 

  24. Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ, Kenyon L et al (2005) Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24(21):3427–3435

    Article  CAS  PubMed  Google Scholar 

  25. Oliveira-Mateos C, Sánchez-Castillo A, Soler M, Obiols-Guardia A, Piñeyro D, Boque-Sastre R et al (2019) The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun 10(1):3979–4036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang X, Cao L, Wang Y, Wang X, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3(5):955–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Martino M, Esposito F, Pellecchia S, Penha RCC, Botti G, Fusco A et al (2020) HMGA1-regulating microRNAs Let-7a and miR-26a are downregulated in human seminomas. Int J Mol Sci 21:3014–3023

    Article  PubMed Central  CAS  Google Scholar 

  28. D’Angelo D, Arra C, Fusco A (2020) RPSAP52 lncRNA inhibits p21Waf1/CIP expression by interacting with the RNA binding protein HuR. Oncol Res 28(2):191–201

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ros G, Pegoraro S, De Angelis P, Sgarra R, Zucchelli S, Gustincich S et al (2019) HMGA2 antisense long non-coding RNAs as new players in the regulation of HMGA2 expression and pancreatic cancer promotion. Front Oncol 9:1526–1531

    Article  PubMed  Google Scholar 

  30. D’Angelo D, Mussnich P, Sepe R, Raia M, Del Vecchio L, Cappabianca P et al (2019) RPSAP52 lncRNA is overexpressed in pituitary tumors and promotes cell proliferation by acting as miRNA sponge for HMGA proteins. J Mol Med (Berl) 97(7):1019–1032

    Article  CAS  Google Scholar 

  31. Wang Z, Wang P, Cao L, Li F, Duan S, Yuan G et al (2019) Long intergenic non-coding RNA 01121 promotes breast cancer cell proliferation, migration, and invasion via the miR-150-5p/HMGA2 axis. Cancer Manag Res 11:10859–10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Martino M, Forzati F, Arra C, Fusco A, Esposito F (2016) HMGA1-pseudogenes and cancer. Oncotarget 7(19):28724–28735

    Article  PubMed  PubMed Central  Google Scholar 

  33. Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A et al (2014) HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 5(18):8341–8354

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  CAS  PubMed  Google Scholar 

  35. Linzer DI, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  CAS  PubMed  Google Scholar 

  36. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M (1989) Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86:8763–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Article  CAS  PubMed  Google Scholar 

  38. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  39. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  40. Nigro JM, Baker SJ, Preisinger AC, Jessup JP, Hosteller R, Cleary K et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    Article  CAS  PubMed  Google Scholar 

  41. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  42. Dolgin E (2017) The most popular genes in the human genome. Nature 551:427–431

    Article  CAS  PubMed  Google Scholar 

  43. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26(2):199–212

    Article  PubMed  Google Scholar 

  47. Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  CAS  PubMed  Google Scholar 

  48. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10):793–805

    Article  CAS  PubMed  Google Scholar 

  50. Hernandez-Boussard T, Montesano R, Hainaut P (1999) Sources of bias in the detection and reporting of p53 mutations in human cancer: analysis of the IARC p53 mutation database. Genet Anal 14(5–6):229–233

    Article  CAS  PubMed  Google Scholar 

  51. Gudkov AV, Komarova EA (2007) Dangerous habits of a security guard: the 2 faces of p53 as a drug target. Hum Mol Genet 16(Spec No 1):R67–R72

    Article  CAS  PubMed  Google Scholar 

  52. Lu C, El-Deiry WS (2009) Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 14:597–606

    Article  CAS  PubMed  Google Scholar 

  53. Bykov VJ, Selivanova G, Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39:1828–1834

    Article  CAS  PubMed  Google Scholar 

  54. Read AP, Strachan T (1999) Cancer genetics. Human molecular genetics 2. Wiley, New York

    Google Scholar 

  55. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405

    Article  CAS  PubMed  Google Scholar 

  57. Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  59. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor supressor p53. FEBS Lett 420:25–27

    Article  CAS  PubMed  Google Scholar 

  60. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  CAS  PubMed  Google Scholar 

  61. Barak Y, Juven T, Haffner R, Oren M (1993) MDM2 expression is induced by wild type p53 activity. EMBO J 12:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hager KM, Gu W (2014) Understanding the noncanonical pathways involved in p53-mediated tumor suppression. Carcinogenesis 35:740–746

    Article  CAS  PubMed  Google Scholar 

  63. Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168

    Article  CAS  PubMed  Google Scholar 

  64. Hupp TR, Lane DP (1994) Allosteric activation of latent p53 tetramers. Curr Biol 4:865–875

    Article  CAS  PubMed  Google Scholar 

  65. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  CAS  PubMed  Google Scholar 

  66. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  67. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  CAS  PubMed  Google Scholar 

  68. Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  CAS  PubMed  Google Scholar 

  69. Brooks CL, Gu W (2006) p53 ubiquitination: mdm2 and Beyond. Mol Cell 21:307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypothesis, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  71. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316

    Article  CAS  PubMed  Google Scholar 

  72. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Actetylation is indispensable for p53 activation. Cell 133:612–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niazi S, Purohit M, Niazi JH (2018) Role of p53 circuitry in tumorigenesis: a brief review. Eur J Med Chem 158:7–24

    Article  CAS  PubMed  Google Scholar 

  74. The Cancer Genome Atlas Research Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  75. The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  PubMed Central  CAS  Google Scholar 

  76. Song Y, Li L, Ou Y, Gao Z, Li E, Li X et al (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509:91–95

    Article  CAS  PubMed  Google Scholar 

  77. Souza-Santos PT, Soares Lima SC, Nicolau-Neto P, Boroni M, Meireles Da Costa N, Brewer L et al (2018) Mutations, differential gene expression, and chimeric transcripts in esophageal squamous cell carcinoma show high heterogeneity. Transl Oncol 11(6):1283–1291

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  CAS  Google Scholar 

  79. Pfeifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  Google Scholar 

  80. https://cancer.sanger.ac.uk/cosmic. COSMIC (Catalogue of Somatic Mutations in Cancer). Accessed Mar 2020

  81. https://p53.iarc.fr/. TP53 database, IARC (International Agency for Research on Cancer). Accessed Mar 2020

  82. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J et al (2016) TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 7(9):865–876

    Article  CAS  Google Scholar 

  83. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    Article  CAS  PubMed  Google Scholar 

  84. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frasca F, Rustighi A, Malaguarnera R, Altamura S, Vigneri P, Del Sal G et al (2006) HMGA1 inhibits the function of p53 family members in thyroid cancer cells. Cancer Res 66(6):2980–2989

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Hu L, Wang J, Li X, Sahengbieke S, Wu J et al (2018) HMGA2 promotes intestinal tumorigenesis by facilitating MDM2-mediated ubiquitination and degradation of p53. J Pathol. 246(4):508–518

    Article  CAS  PubMed  Google Scholar 

  87. Puca F, Colamaio M, Federico A, Gemei M, Tosti N, Bastos AU, Del Vecchio L, Pece S, Battista S, Fusco A (2014) HMGA1 silencing restores normal stem cell characteristics in colon cancer stem cells by increasing p53 levels. Oncotarget 5(10):3234–3245

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Zeng K, Xu M, Liu X, Hu X, Xu T et al (2019) p53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis 10(2):131–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. He L, Zhao X, He L (2020) LINC01140 alleviates the oxidized low-density lipoprotein-induced inflammatory response in macrophages via suppressing miR-23b. Inflammation 43(1):66–73

    Article  CAS  PubMed  Google Scholar 

  90. Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T et al (2015) p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 29(10):2015–2023

    Article  CAS  PubMed  Google Scholar 

  91. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593

    Article  CAS  PubMed  Google Scholar 

  92. Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT et al (2018) Modulation of protein-interaction states through the cell cycle. Cell 173(6):1481–1494

    Article  CAS  PubMed  Google Scholar 

  93. Ingham M, Schwartz GK (2017) Cell-cycle therapeutics come of age. J Clin Oncol 35(25):2949–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fedele M, Fusco A (2010) Role of the high mobility group A proteins in the regulation of pituitary cell cycle. J Mol Endocrinol 44(6):309–318

    Article  CAS  PubMed  Google Scholar 

  95. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  CAS  PubMed  Google Scholar 

  96. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  CAS  PubMed  Google Scholar 

  97. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potente inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  98. Quaas M, Müller GA, Engeland K (2012) p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11:4661–4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rother K, Kirschner R, Sänger K, Böhlig L, Mössner J, Engeland K (2007) p53 downregulates expression of the G1/S cell cycle phosphatase Cdc25A. Oncogene 26(13):1949–1953

    Article  CAS  PubMed  Google Scholar 

  101. Rocha S, Martin AM, Meek DW, Perkins ND (2003) p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 23(13):4713–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gorjala P, Cairncross JG, Gary RK (2016) p53-dependent up-regulation of CDKN1A and down-regulation of CCNE2 in response to beryllium. Cell Prolif 49(6):698–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fischer M, Steiner L, Engeland K (2014) The transcription factor p53: not a repressor, solely an activator. Cell Cycle 13:3037–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Engeland K (2018) Cell cycle arrest through indirect transcriptional repression by p53: i have a DREAM. Cell Death Differ 25(1):114–132

    Article  CAS  PubMed  Google Scholar 

  105. Sadasivam S, DeCaprio JA (2013) The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13(8):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR (2002) Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21:2119–2129

    Article  CAS  PubMed  Google Scholar 

  107. Mannefeld M, Klassen E, Gaubatz S (2009) B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res 69(9):4073–4080

    Article  CAS  PubMed  Google Scholar 

  108. Fischer M, Quaas M, Nickel A, Engeland K (2015) Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 6(39):41402–41417

    Article  PubMed  PubMed Central  Google Scholar 

  109. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245

    Article  CAS  PubMed  Google Scholar 

  110. Wong MY, Yu Y, Walsh WR, Yang JL (2011) microRNA-34 family and treatment of cancers with mutant or wild-type p53. Int J Oncol 38(5):1189–1195

    CAS  PubMed  Google Scholar 

  111. He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67(23):11099–11101

    Article  CAS  PubMed  Google Scholar 

  112. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    Article  CAS  PubMed  Google Scholar 

  114. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  CAS  PubMed  Google Scholar 

  115. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS (2019) The p53-signaling pathway and colorectal cancer: interactions between downstream p53 target genes and miRNAs. Genomics 111(4):762–771

    Article  CAS  PubMed  Google Scholar 

  117. Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R et al (2011) Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 10(8):M111.010462

  118. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S et al (2011) EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 9(7):960–975

    Article  CAS  PubMed  Google Scholar 

  119. Lal A, Thomas MP, Altschuler G, Navarro F, O’Day E, Li XL et al (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7(11):e1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Welponer H, Tsibulak I, Wieser V, Degasper C, Shivalingaiah G, Wenzel S et al (2020) The miR-34 family and its clinical significance in ovarian cancer. J Cancer 11(6):1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schmid G, Notaro S, Reimer D, Abdel-Azim S, Duggan-Peer M, Holly J et al (2016) Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer 16:102–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Bonetti P, Climent M, Panebianco F, Tordonato C, Santoro A, Marzi MJ et al (2019) Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene 38(3):360–374

    Article  CAS  PubMed  Google Scholar 

  123. Park EY, Chang E, Lee EJ, Lee HW, Kang HG, Chun KH et al (2014) Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res 74(24):7573–7582

    Article  CAS  PubMed  Google Scholar 

  124. Hui WT, Ma XB, Zan Y, Wang XJ, Dong L (2015) Prognostic significance of miR-34a expression in patients with gastric cancer after radical gastrectomy. Chin Med J (Engl) 128:2632–2637

    Article  CAS  Google Scholar 

  125. Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O et al (2011) miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics 4:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y et al (2009) microRNA expression profile in undifferentiated gastric cancer. Int J Oncol 34:537–542

    CAS  PubMed  Google Scholar 

  127. Zhang H, Li S, Yang J, Liu S, Gong X, Yu X (2015) The prognostic value of miR-34a expression in completely resected gastric cancer: tumor recurrence and overall survival. Int J Clin Exp Med 8:2635–2641

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4(8):e6816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D et al (2008) Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 8:266–278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Venkatesan N, Krishnakumar S, Deepa PR, Deepa M, Khetan V, Reddy MA (2012) Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells. Mol Vis 18:2420–3247

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kooi IE, van Mil SE, MacPherson D, Mol BM, Moll AC, Meijers-Heijboer H et al (2017) Genomic landscape of retinoblastoma in Rb -/- p130 -/- mice resembles human retinoblastoma. Genes Chromosomes Cancer 56(3):231

    Article  CAS  PubMed  Google Scholar 

  132. Schuldenfrei A, Belton A, Kowalski J, Talbot CC Jr, Di Cello F, Poh W et al (2011) HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis. BMC Genomics 12:549–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xi Y, Li YS, Tang HB (2013) High mobility group A1 protein acts as a new target of Notch1 signaling and regulates cell proliferation in T leukemia cells. Mol Cell Biochem 374(1–2):173–180

    Article  CAS  PubMed  Google Scholar 

  134. Pegoraro S, Ros G, Ciani Y, Sgarra R, Piazza S, Manfioletti G (2015) A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness. Oncotarget 6(22):19087–19101

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fu F, Wang T, Wu Z, Feng Y, Wang W, Zhou S et al (2018) HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer. Cell Death Dis 9(6):594–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I et al (2005) Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115:3166–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6:347–359

    Article  CAS  PubMed  Google Scholar 

  138. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  139. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022

    Article  CAS  PubMed  Google Scholar 

  140. Furth N, Aylon Y, Oren M (2018) p53 shades of Hippo. Cell Death Differ 25(1):81–92

    Article  CAS  PubMed  Google Scholar 

  141. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V et al (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14(3):791–798

    Article  CAS  PubMed  Google Scholar 

  142. Brooks CL, Gu W (2011) The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2(6):456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brochier C, Dennis G, Rivieccio MA, McLaughlin K, Coppola G, Ratan RR et al (2013) Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J Neurosci 33(20):8621–8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ueda Y, Watanabe S, Tei S, Saitoh N, Kuratsu J, Nakao M (2007) High mobility group protein HMGA1 inhibits retinoblastoma protein-mediated cellular G0 arrest. Cancer Sci 98(12):1893–1901

    Article  CAS  PubMed  Google Scholar 

  145. Pierantoni GM, Battista S, Pentimalli F, Fedele M, Visone R, Federico A et al (2003) A truncated HMGA1 gene induces proliferation of the 3T3-L1 pre-adipocytic cells: a model of human lipomas. Carcinogenesis 24(12):1861–1869

    Article  CAS  PubMed  Google Scholar 

  146. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  CAS  Google Scholar 

  147. Fernandes ER, Zhang JY, Rooney RJ (1998) Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1. Mol Cell Biol 18(1):459–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sandy P, Gostissa M, Fogal V, Cecco LD, Szalay K, Rooney RJ et al (2000) p53 is involved in the p120E4F-mediated growth arrest. Oncogene 19(2):188–199

    Article  CAS  PubMed  Google Scholar 

  149. Rizos H, Diefenbach E, Badhwar P, Woodruff S, Becker TM, Rooney RJ et al (2003) Association of p14ARF with the p120E4F transcriptional repressor enhances cell cycle inhibition. J Biol Chem 278(7):4981–4989

    Article  CAS  PubMed  Google Scholar 

  150. Leone V, Langella C, D’Angelo D, Mussnich P, Wierinckx A, Terracciano L et al (2014) Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 390(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  151. Zhang ZC, Wang GP, Yin LM, Li M, Wu LL (2018) Increasing miR-150 and lowering HMGA2 inhibit proliferation and cycle progression of colon cancer in SW480 cells. Eur Rev Med Pharmacol Sci 22(20):6793–6800

    PubMed  Google Scholar 

  152. Li S, Peng F, Ning Y, Jiang P, Peng J, Ding X et al (2020) SNHG16 as the miRNA let-7b-5p sponge facilitates the G2/M and epithelial-mesenchymal transition by regulating CDC25B and HMGA2 expression in hepatocellular carcinoma. J Cell Biochem 121(3):2543–2558

    Article  CAS  PubMed  Google Scholar 

  153. Peng H, Li H (2019) The encouraging role of long noncoding RNA small nuclear RNA host gene 16 in epithelial-mesenchymal transition of bladder cancer via directly acting on miR-17-5p/metalloproteinases 3 axis. Mol Carcinog 58(8):1465–1480

    Article  CAS  PubMed  Google Scholar 

  154. Zhong JH, Xiang X, Wang YY, Liu X, Qi LN, Luo CP et al (2020) The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J Cell Physiol 235(2):1090–1102

    Article  CAS  PubMed  Google Scholar 

  155. Yang M, Wei W (2019) SNHG16: a novel long-non coding RNA in human cancers. Onco Targets Ther 12:11679–11690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mu X, Chen M, Xiao B, Yang B, Singh S, Zhang B (2019) EZH2 confers sensitivity of breast cancer cells to taxol by attenuating p21 expression epigenetically. DNA Cell Biol 38(7):651–659

    Article  CAS  PubMed  Google Scholar 

  157. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y et al (2017) Redundant and incoherent regulations of multiple phenotypes suggest microRNAs’ role in stability control. Genome Res 27(10):1665–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fedele M, Paciello O, De Biase D, Monaco M, Chiappetta G, Vitiello M et al (2018) HMGA2 cooperates with either p27kip1 deficiency or Cdk4R24C mutation in pituitary tumorigenesis. Cell Cycle 17(5):580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815

    Article  CAS  PubMed  Google Scholar 

  161. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11

    Article  CAS  PubMed  Google Scholar 

  162. Zhan Q, Chen IT, Antinore MJ, Fornace AJ Jr (1998) Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 18:2768–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mössner J et al (2000) The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res 28(22):4410–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fischer M, Quaas M, Steiner L, Engeland K (2016) The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res 44(1):164–174

    Article  CAS  PubMed  Google Scholar 

  165. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96(5):2147–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Taylor WR, DePrimo SE, Agarwal A, Agarwal ML, Schönthal AH, Katula KS et al (1999) Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell 10(11):3607–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Taylor WR, Schonthal AH, Galante J, Stark GR (2001) p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276(3):1998–2006

    Article  CAS  PubMed  Google Scholar 

  168. Müller GA, Engeland K (2010) The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J 277(4):877–893

    Article  PubMed  CAS  Google Scholar 

  169. Pierantoni GM, Conte A, Rinaldo C, Tornincasa M, Gerlini R, Federico A et al (2015) Deregulation of HMGA1 expression induces chromosome instability through regulation of spindle assembly checkpoint genes. Oncotarget 6(19):17342–17353

    Article  PubMed  PubMed Central  Google Scholar 

  170. Di Agostino S, Fedele M, Chieffi P, Fusco A, Rossi P, Geremia R et al (2004) Phosphorylation of high-mobility group protein A2 by Nek2 kinase during the first meiotic division in mouse spermatocytes. Mol Biol Cell 15(3):1224–1232

    Article  PubMed  PubMed Central  Google Scholar 

  171. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Ver Mol Cell Biol 8:379–393

    Article  CAS  Google Scholar 

  172. Rao CV, Yamada HY, Yao Y, Dai W (2009) Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nam HJ, Naylor RM, van Deursen JM (2015) Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 25:65–73

    Article  CAS  PubMed  Google Scholar 

  174. Funk LC, Zasadil LM, Weaver BA (2016) Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev Cell 39:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53- dependent mechanism. J Cell Biol 188:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wolter P, Hanselmann S, Pattschull G, Schruf E, Gaubatz S (2017) Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget 8:11160–11172

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wolter P, Schmitt K, Fackler M, Kremling H, Probst L, Hauser S et al (2012) GAS2L3, a target gene of the DREAM complex, is required for proper cytokinesis and genomic stability. J Cell Sci 125:2393–2406

    CAS  PubMed  Google Scholar 

  178. Li C, Lin M, Liu J (2004) Identification of PRC1 as the p53 target gene uncovers a novel function of p53 in the regulation of cytokinesis. Oncogene 23:9336–9347

    Article  CAS  PubMed  Google Scholar 

  179. Muller S, Almouzni G (2017) Chromatin dynamics during the cell cycle at centromeres. Nat Ver Genet 18:192–208

    Article  CAS  Google Scholar 

  180. Filipescu D, Naughtin M, Podsypanina K, Lejour V, Wilson L, Gurard-Levin ZA et al (2017) Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes Dev 31:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23(36):9408–9421

    Article  CAS  PubMed  Google Scholar 

  182. Law ME, Corsino PE, Narayan S, Law BK (2015) Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol Pharmacol 88(5):846–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Luserna Ghelli, di Rora’ A, Iacobucci I, Martinelli G (2017) The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol 10(1):77–91

    Article  CAS  Google Scholar 

  184. Huso TH, Resar LM (2014) The high mobility group A1 molecular switch: turning on cancer—can we turn it off? Expert Opin Ther Targets 18(5):541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Baluna R, Vitetta ES (1997) Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 37(2–3):117–132

  186. Beckerbauer L, Tepe JJ, Eastman RA, Mixter PF, Williams RM, Reeves R (2002) Differential effects of FR900482 and FK317 onapoptosis, IL-2 gene expression, and induction of vascular leak syndrome. Chem Biol 9(4):427–441

    Article  CAS  PubMed  Google Scholar 

  187. Parisi S, Piscitelli S, Passaro F, Russo T (2020) HMGA proteins in stemness and differentiation of embryonic and adult stem cells. Int J Mol Sci 21(1):E362

  188. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    Article  CAS  PubMed  Google Scholar 

  189. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  CAS  PubMed  Google Scholar 

  191. Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW et al (2005) Temporal dissection of p53 function in vitro and in vivo. Nat Genet 37:718–726

    Article  CAS  PubMed  Google Scholar 

  192. Jackson JG, Lozano G (2013) The mutant p53 mouse as a pre-clinical model. Oncogene 32:4325–4330

    Article  CAS  PubMed  Google Scholar 

  193. Xue C, Haber M, Flemming C, Marshall GM, Lock RB, MacKenzie KL et al (2007) p53 determines multidrug sensitivity of childhood neuroblastoma. Cancer Res 67:10351–10360

    Article  CAS  PubMed  Google Scholar 

  194. Kenzelmann Broz D, Attardi LD (2010) In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis 31:1311–1318

    Article  CAS  PubMed  Google Scholar 

  195. Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T et al (2011) Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest 121:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG (2018) Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18(2):89–102

    Article  CAS  PubMed  Google Scholar 

  197. Duffy MJ, Synnott NC, Crown J (2017) Mutant p53 as a target for cancer treatment. Eur J Cancer 83:258–265

    Article  CAS  PubMed  Google Scholar 

  198. Duffy MJ, Synnott NC, McGowan PM, Crown J, O’Connor D, Gallagher WM (2014) p53 as a target for the treatment of cancer. Cancer Treat Rev 40(10):1153–1160

    Article  CAS  PubMed  Google Scholar 

  199. Levine AJ (2019) Targeting therapies for the p53 protein in cancer treatments. Annu Rev Cancer Biol 3:21–34

    Article  Google Scholar 

  200. Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    Article  CAS  PubMed  Google Scholar 

  201. Zhou X, Hao Q, Lu H (2019) Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol 11(4):293–305

    Article  CAS  PubMed  Google Scholar 

  202. Mantovani F, Walerych D, Sal GD (2017) Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J 284(6):837–850

    Article  CAS  PubMed  Google Scholar 

  203. Lambert JM, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D (2009) PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15(5):376–388

    Article  CAS  PubMed  Google Scholar 

  204. Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J (2018) APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 9:439–451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Bou-Hanna C, Jarry A, Lode L, Schmitz I, Schulze-Osthoff K, Kury S et al (2015) Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer Lett 359:211–217

    Article  CAS  PubMed  Google Scholar 

  206. Wang T, Lee K, Rehman A, Daoud SS (2007) PRIMA-1 induces apoptosis by inhibiting JNK signaling but promoting the activation of Bax. Biochem Biophys Res Commun 352:203–212

    Article  CAS  PubMed  Google Scholar 

  207. Bykov VJ, Wiman KG (2014) Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 588(16):2622–2627

    Article  CAS  PubMed  Google Scholar 

  208. Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U et al (2012) Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30:3633–3639

    Article  CAS  PubMed  Google Scholar 

  209. Prokocimer M, Molchadsky A, Rotter V (2017) Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130(6):699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 2:181–185

    Article  CAS  Google Scholar 

  211. Wang X, Simon R (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genom 6:30–40

    Article  CAS  Google Scholar 

  212. Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT et al (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Investig 122(4):1541–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W et al (2010) Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. PNAS 107(28):12463–12468

  214. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Leijen S, van Geel RM, Pavlick AC, Tibes R, Rosen L, Razak AR et al (2016) Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 34(36):4371–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Leijen S, van Geel RM, Sonke GS, de Jong D, Rosenberg EH, Marchetti S et al (2016) Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol 34(36):4354–4361

    Article  CAS  PubMed  Google Scholar 

  217. Peng Z, Yu Q, Bao L (2008) The application of gene therapy in China. IDrugs 11(5):346–350

    PubMed  Google Scholar 

Download references

Funding

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil), Fundação de Amparo à Pesquisa Carlos Chagas Filho (FAPERJ—Brazil), Swiss Bridge Foundation and Associazione Italiana Ricerca sul Cancro (AIRC—Italy) for the financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalia Meireles Da Costa or Luiz Eurico Nasciutti.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meireles Da Costa, N., Palumbo, A., De Martino, M. et al. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell. Mol. Life Sci. 78, 817–831 (2021). https://doi.org/10.1007/s00018-020-03634-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03634-4

Keywords

Navigation