Skip to main content
Log in

NACHO and 14-3-3 promote expression of distinct subunit stoichiometries of the α4β2 acetylcholine receptor

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChRs) belong to the superfamily of pentameric ligand-gated ion channels, and in neuronal tissues, are assembled from various types of α- and β-subunits. Furthermore, the subunits α4 and β2 assemble in two predominant stoichiometric forms, (α4)2(β2)3 and (α4)3(β2)2, forming receptors with dramatically different sensitivity to agonists and allosteric modulators. However, mechanisms by which the two stoichiometric forms are regulated are not known. Here, using heterologous expression in mammalian cells, single-channel patch-clamp electrophysiology, and calcium imaging, we show that the ER-resident protein NACHO selectively promotes the expression of the (α4)2(β2)3 stoichiometry, whereas the cytosolic molecular chaperone 14-3-3η selectively promotes the expression of the (α4)3(β2)2 stoichiometry. Thus, NACHO and 14-3-3η are potential physiological regulators of subunit stoichiometry, and are potential drug targets for re-balancing the stoichiometry in pathological conditions involving α4β2 nAChRs such as nicotine dependence and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246. https://doi.org/10.1016/j.neuropharm.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  2. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120. https://doi.org/10.1152/physrev.00015.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. https://doi.org/10.1016/j.neuron.2011.04.026

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2004.04.006

    Article  PubMed  Google Scholar 

  5. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716. https://doi.org/10.1038/383713a0

    Article  CAS  PubMed  Google Scholar 

  6. Sine SM (2012) End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease. Physiol Rev. https://doi.org/10.1152/physrev.00015.2011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kent L, Middle F, Hawi Z, Fitzgerald M, Gill M, Feehan C et al (2001) Nicotinic acetylcholine receptor α4 subunit gene polymorphism and attention deficit hyperactivity disorder. Psychiatr Genet 11:37–40. https://doi.org/10.1097/00041444-200103000-00007

    Article  CAS  PubMed  Google Scholar 

  8. Sarter M, Parikh V, Howe WM (2009) nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2009.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker G-A et al (2018) Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain 141:1840–1854. https://doi.org/10.1093/brain/awy099

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, Yang Y, Galvin VC, Yang S, Arnsten AF, Wang M (2017) Nicotinic α4β2 cholinergic receptor influences on dorsolateral prefrontal cortical neuronal firing during a working memory task. J Neurosci 37:5366–5377. https://doi.org/10.1523/JNEUROSCI.0364-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGranahan TM, Patzlaff NE, Grady SR, Heinemann SF, Booker TK (2011) α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 31:10891–10902. https://doi.org/10.1523/JNEUROSCI.0937-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2012.08.012

    Article  PubMed  Google Scholar 

  13. Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65. https://doi.org/10.1038/nrn1298

    Article  CAS  PubMed  Google Scholar 

  14. Picciotto MR, Kenny PJ (2013) Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med. 3:a012112. https://doi.org/10.1101/cshperspect.a012112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taly A, Corringer P-J, Guedin D, Lestage P, Changeux J-P (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov. 8:733–750. https://doi.org/10.1038/nrd2927

    Article  CAS  PubMed  Google Scholar 

  16. Zoli M, Pistillo F, Gotti C (2015) Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 96:302–311. https://doi.org/10.1016/j.neuropharm.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  17. Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena C, Le Novere N, de Kerchove d’Exaerde A et al (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810. https://doi.org/10.1038/19756

    Article  CAS  PubMed  Google Scholar 

  18. Picciotto MR, Zoli M, Léna C, Bessis A, Lallemand Y, LeNovère N et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67. https://doi.org/10.1038/374065a0

    Article  CAS  PubMed  Google Scholar 

  19. Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK et al (2000) Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 20:6431–6441

    Article  CAS  Google Scholar 

  20. Zoli M, Léna C, Picciotto MR, Changeux JP (1998) Identification of four classes of brain nicotinic receptors using β mutant mice. J Neurosci 18:4461–4472. https://doi.org/10.1523/jneurosci.18-12-04461.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fasoli F, Moretti M, Zoli M, Pistillo F, Crespi A, Clementi F et al (2016) In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus. Neuropharmacology 108:324–331. https://doi.org/10.1016/j.neuropharm.2016.04.048

    Article  CAS  PubMed  Google Scholar 

  22. Fu X, Moonschi FH, Fox-Loe AM, Snell AA, Hopkins DM, Avelar AJ et al (2019) Brain region specific single-molecule fluorescence imaging. Anal Chem 91:10125–10131. https://doi.org/10.1021/acs.analchem.9b02133

    Article  CAS  PubMed  Google Scholar 

  23. DeDominicis KE, Sahibzada N, Olson TT, Xiao Y, Wolfe BB, Kellar KJ et al (2017) The (α 4) 3 (β 2) 2 stoichiometry of the nicotinic acetylcholine receptor predominates in the rat motor cortex. Mol Pharmacol 92:327–337. https://doi.org/10.1124/mol.116.106880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamotte d’Incamps B, Zorbaz T, Dingova D, Krejci E, Ascher P (2018) Stoichiometry of the heteromeric nicotinic receptors of the renshaw cell. J Neurosci 38:4943–4956. https://doi.org/10.1523/jneurosci.0070-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moroni M, Zwart R, Sher E, Cassels BK, Bermudez I (2006) alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol 70:755–768. https://doi.org/10.1124/mol.106.023044

    Article  CAS  PubMed  Google Scholar 

  26. Mazzaferro S, Bermudez I, Sine SM (2017) α4β2 nicotinic acetylcholine receptors: relationships between subunit stoichiometry and function at the single channel level. J Biol Chem 292:2729–2740. https://doi.org/10.1074/jbc.M116.764183

    Article  CAS  PubMed  Google Scholar 

  27. Carbone L, Moroni M, Groot-Kormelink P-J, Bermudez I (2009) Pentameric concatenated (alpha4)(2)(beta2)(3) and (alpha4)(3)(beta2)(2) nicotinic acetylcholine receptors: subunit arrangement determines functional expression. Br J Pharmacol 156:970–981. https://doi.org/10.1111/j.1476-5381.2008.00104.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsh RM, Roh SH, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE (2018) Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557:261–265. https://doi.org/10.1038/s41586-018-0081-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morales-Perez CL, Noviello CM, Hibbs RE (2016) Manipulation of subunit stoichiometry in heteromeric membrane proteins. Structure. 24:797–805. https://doi.org/10.1016/j.str.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Srinivasan R, Richards CI, Xiao C, Rhee D, Pantoja R, Dougherty D et al (2012) Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response. Mol Pharmacol 81:759–769. https://doi.org/10.1124/mol.112.077792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R et al (2009) Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J. 11:167–177. https://doi.org/10.1208/s12248-009-9090-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srinivasan R, Pantoja R, Moss FJ, Mackey EDW, Son CD, Miwa J et al (2011) Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. J Gen Physiol 137:59–79. https://doi.org/10.1085/jgp.201010532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J (2003) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63:332–341

    Article  CAS  Google Scholar 

  34. Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 21:1819–1829

    Article  CAS  Google Scholar 

  35. Fox AM, Moonschi FH, Richards CI (2015) The nicotine metabolite, cotinine, alters the assembly and trafficking of a subset of nicotinic acetylcholine receptors. J Biol Chem 290:24403–24412. https://doi.org/10.1074/jbc.M115.661827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matta JA, Gu S, Davini WB, Lord B, Siuda ER, Harrington AW et al (2017) NACHO mediates nicotinic acetylcholine receptor function throughout the brain. Cell Rep. 19:688–696. https://doi.org/10.1016/j.celrep.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  37. Gu S, Matta JA, Lord B, Harrington AW, Sutton SW, Davini WB et al (2016) Brain α7 nicotinic acetylcholine receptor assembly requires NACHO. Neuron 89:948–955. https://doi.org/10.1016/j.neuron.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  38. Rex EB, Shukla N, Gu S, Bredt D, DiSepio D (2017) A genome-wide arrayed cDNA screen to identify functional modulators of α7 nicotinic acetylcholine receptors. SLAS Discov. 22:155–165. https://doi.org/10.1177/1087057116676086

    Article  CAS  PubMed  Google Scholar 

  39. Boston PF, Jackson P, Thompson RJ (1982) Human 14–3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38:1475–1482. https://doi.org/10.1111/j.1471-4159.1982.tb07928.x

    Article  CAS  PubMed  Google Scholar 

  40. Umahara T, Uchihara T, Nakamura A, Iwamoto T (2011) Differential expression of 14-3-3 protein isoforms in developing rat hippocampus, cortex, rostral migratory stream, olfactory bulb, and white matter. Brain Res 1410:1–11. https://doi.org/10.1016/j.brainres.2011.06.036

    Article  CAS  PubMed  Google Scholar 

  41. Gu Q, Cuevas E, Raymick J, Kanungo J, Sarkar S (2020) Downregulation of 14-3-3 proteins in Alzheimer’s disease. Mol Neurobiol 57:32–40. https://doi.org/10.1007/s12035-019-01754-y

    Article  CAS  PubMed  Google Scholar 

  42. Jeanclos EM, Lin L, Treuil MW, Rao J, DeCoster MA, Anand R (2001) The chaperone protein 14-3-3η interacts with the nicotinic acetylcholine receptor α4 subunit. J Biol Chem 276:28281–28290. https://doi.org/10.1074/JBC.M011549200

    Article  CAS  PubMed  Google Scholar 

  43. Exley R, Moroni M, Sasdelli F, Houlihan LM, Lukas RJ, Sher E et al (2006) Chaperone protein 14-3-3 and protein kinase a increase the relative abundance of low agonist sensitivity human α4β2 nicotinic acetylcholine receptors in Xenopus oocytes. J Neurochem 98:876–885. https://doi.org/10.1111/j.1471-4159.2006.03915.x

    Article  CAS  PubMed  Google Scholar 

  44. Mazzaferro S, Benallegue N, Carbone A, Gasparri F, Vijayan R, Biggin PC et al (2011) Additional Acetylcholine (ACh) binding site at α4/α4 interface of (α4β2)2α4 nicotinic receptor influences agonist sensitivity. J Biol Chem 286:31043–31054. https://doi.org/10.1074/jbc.M111.262014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee BS, Gunn RB, Kopito RR (1991) Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J Biol Chem 266(18):11448–11454

    Article  CAS  Google Scholar 

  46. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396

    Article  CAS  Google Scholar 

  47. Sine SM (1993) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci USA 90:9436–9440

    Article  CAS  Google Scholar 

  48. Sine SM, Quiram P, Papanikolaou F, Kreienkamp HJ, Taylor P (1994) Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists. J Biol Chem 269:8808–8816

    Article  CAS  Google Scholar 

  49. Mazzaferro S, Bermudez I, Sine SM (2019) Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cell Mol Life Sci. https://doi.org/10.1007/s00018-018-2993-7

    Article  PubMed  Google Scholar 

  50. Sine SM, Claudio T, Sigworth FJ (1990) Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities. J Gen Physiol 96:395–437

    Article  CAS  Google Scholar 

  51. Mukhtasimova N, DaCosta CJB, Sine SM (2016) Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR. J Gen Physiol 148:43–63. https://doi.org/10.1085/jgp.201611584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Colquhoun D, Sigworth FL (1983) Fitting and statistical analysis of single channel records single channel recording. Springer, Boston, pp 483–587. https://doi.org/10.1007/978-1-4615-7858-1_11

    Book  Google Scholar 

  53. Timmermann DB, Sandager-Nielsen K, Dyhring T, Smith M, Jacobsen A-M, Nielsen EØ et al (2012) Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of α2- and α4-containing nicotinic acetylcholine receptors. Br J Pharmacol 167:164–182. https://doi.org/10.1111/j.1476-5381.2012.01989.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tapia L, Kuryatov A, Lindstrom J (2007) Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol 71:769–776. https://doi.org/10.1124/mol.106.030445

    Article  CAS  PubMed  Google Scholar 

  55. Nichols WA, Henderson BJ, Yu C, Parker RL, Richards CI, Lester HA et al (2014) Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum. J Biol Chem 289:31423–31432. https://doi.org/10.1074/jbc.M114.573667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ibañez-Tallon I, Miwa JM, Wang HL, Adams NC, Crabtree GW, Sine SM et al (2002) Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33:893–903. https://doi.org/10.1016/S0896-6273(02)00632-3

    Article  PubMed  Google Scholar 

  57. Wichern F, Jensen MM, Christensen DZ, Mikkelsen JD, Gondré-Lewis MC, Thomsen MS (2017) Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.01.026

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tinuper P, Bisulli F (2011) Autosomal dominant nocturnal frontal lobe epilepsy. In: Shorvon SD, Andermann F, Guerrini R (eds) The causes of epilepsy. Cambridge University Press, Cambridge, pp 70–73. https://doi.org/10.1017/cbo9780511921001.010

    Chapter  Google Scholar 

  59. Son CD, Moss FJ, Cohen BN, Lester HA (2009) Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy. Mol Pharmacol 75:1137–1148. https://doi.org/10.1124/mol.108.054494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pavlakis PP, Douglass LM (2015) Pearls & Oy-sters: a case of refractory nocturnal seizures: putting out fires without smoke. Neurology. 84:e134–e136. https://doi.org/10.1212/WNL.0000000000001539

    Article  PubMed  PubMed Central  Google Scholar 

  61. Willoughby JO, Pope KJ, Eaton V (2003) Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia. 44:1238–1240. https://doi.org/10.1046/j.1528-1157.2003.58102.x-i1

    Article  CAS  PubMed  Google Scholar 

  62. Ghasemi M, Hadipour-Niktarash A (2015) Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 26(2):199–223

    Article  CAS  Google Scholar 

  63. Lossius K, de Saint Martin A, Myren-Svelstad S, Bjørnvold M, Minken G, Seegmuller C et al (2020) Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav 105:106944. https://doi.org/10.1016/j.yebeh.2020.106944

    Article  PubMed  Google Scholar 

  64. Brodtkorb E, Picard F (2006) Tobacco habits modulate autosomal dominant nocturnal frontal lobe epilepsy. Epilepsy Behav 9:515–520. https://doi.org/10.1016/j.yebeh.2006.07.008

    Article  PubMed  Google Scholar 

Download references

Funding

National Institutes of Health; award number NS31744 to Steven M Sine.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SM, SMS; Methodology: SM, CA; Formal analysis and investigation: SM, STW and CA; Writing—original draft preparation: SM and SMS; Writing—review and editing: SM, STW, CA, AB and SMS; Funding acquisition: SMS; Resources: AB and SMS; Supervision: SMS.

Corresponding authors

Correspondence to Simone Mazzaferro or Sara T. Whiteman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzaferro, S., Whiteman, S.T., Alcaino, C. et al. NACHO and 14-3-3 promote expression of distinct subunit stoichiometries of the α4β2 acetylcholine receptor. Cell. Mol. Life Sci. 78, 1565–1575 (2021). https://doi.org/10.1007/s00018-020-03592-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03592-x

Keywords

Navigation