Skip to main content

Advertisement

Log in

Activation of stress response axis as a key process in environment-induced sex plasticity in fish

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The determination of sex is an important hallmark in the life cycle of organisms, in which the fate of gonads and then the individual sex are defined. In gonochoristic teleost fish, this process is characterized by a high plasticity, considering that in spite of genotypic sex many environmental factors can cause shifts from one to another molecular pathway, resulting in organisms with mismatching genotypic and phenotypic sexes. Interestingly, in most instances, both female-to-male or male-to-female sex-reversed individuals develop functional gonads with normal gametogenesis and respective progenies with full viability. The study of these mechanisms is being spread to other non-model species or to those inhabiting more extreme environmental conditions. Although water temperature is an important mechanism involved in sex determination, there are other environmental stressors affected by the climate change which are also implicated in stress response-induced masculinization in fish. In this regard, the brain has emerged as the transducer of the environment input that can influence the gonadal fate. Furthermore, the evaluation of other environmental stressors or their synergic effect on sex determination at conditions that simulate the natural environments is growing gradually. Within such scope, the concerns related to climate change impacts rely on the fact that many of biotic and abiotic parameters reported to affect sex ratios are expected to increase concomitantly as a result of increased greenhouse gas emissions and, particularly worrying, many of them are related to male bias in the populations, such as high temperature, hypoxia, and acidity. These environmental changes can also generate epigenetic changes in sex-related genes affecting their expression, with implications on sex differentiation not only of exposed individuals but also in following generations. The co-analysis of multi-stressors with potential inter- and transgenerational effects is essential to allow researchers to perform long-term predictions on climate change impacts in wild populations and for establishing highly accurate monitoring tools and suitable mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willeit M, Ganopolski A, Calov R, Brovkin V (2019) Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci Adv 5:eaav7337. https://doi.org/10.1126/sciadv.aav7337

    Article  CAS  Google Scholar 

  2. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–111. https://doi.org/10.1038/s41586-019-1132-4

    Article  CAS  Google Scholar 

  3. Geffroy B, Douhard M (2019) The adaptive sex in stressful environments. Trends Ecol Evol 34:628–640. https://doi.org/10.1016/j.tree.2019.02.012

    Article  Google Scholar 

  4. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525. https://doi.org/10.1093/icb/42.3.517

    Article  CAS  Google Scholar 

  5. Björnsson BT, Stefansson SO, McCormick SD (2011) Environmental endocrinology of salmon smoltification. Gen Comp Endocrinol 170:290–298. https://doi.org/10.1016/j.ygcen.2010.07.003

    Article  CAS  Google Scholar 

  6. Ashman TL, Bachtrog D, Blackmon H, Goldberg EE, Hahn MW, Kirkpatrick M, Kitano J, Mank JE, Mayrose I, Ming R, Otto SP, Peichel CL, Pennell MW, Perrin N, Ross L, Valenzuela N, Vamosi JC (2014) Tree of sex: a database of sexual systems. Sci Data 1:140015. https://doi.org/10.1038/sdata.2014.15

    Article  Google Scholar 

  7. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364. https://doi.org/10.1016/S0044-8486(02)00057-1

    Article  CAS  Google Scholar 

  8. Nishimura T, Tanaka M (2016) The mechanism of germline sex determination in vertebrates. Biol Reprod 95:30–30. https://doi.org/10.1095/biolreprod.115.138271

    Article  CAS  Google Scholar 

  9. Capel B (2017) Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 18:675–689. https://doi.org/10.1038/nrg.2017.60

    Article  CAS  Google Scholar 

  10. Nishimura T, Tanaka M (2014) Gonadal development in fish. Sex Dev 8:252–261. https://doi.org/10.1159/000364924

    Article  Google Scholar 

  11. Nakamura S, Kobayashi K, Nishimura T, Higashijima S-i, Tanaka M (2010) Identification of germline stem cells in the ovary of the teleost medaka. Science 80(328):1561–1563. https://doi.org/10.1126/science.1185473

    Article  CAS  Google Scholar 

  12. Hattori RS, Yoshinaga TT, Katayama N, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, Tabata YA (2019) Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture 506:238–245. https://doi.org/10.1016/j.aquaculture.2019.03.037

    Article  Google Scholar 

  13. Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA 103:2725–2729. https://doi.org/10.1073/pnas.0509218103

    Article  CAS  Google Scholar 

  14. Yoshizaki G, Yazawa R (2019) Application of surrogate broodstock technology in aquaculture. Fish Sci 85:429–437. https://doi.org/10.1007/s12562-019-01299-y

    Article  CAS  Google Scholar 

  15. Majhi SK, Hattori RS, Rahman SM, Strussmann CA (2014) Surrogate production of eggs and sperm by intrapapillary transplantation of germ cells in cytoablated adult fish. PLoS ONE 9:e95294. https://doi.org/10.1371/journal.pone.0095294

    Article  Google Scholar 

  16. Sun L-N, Jiang X-L, Xie Q-P, Yuan J, Huang B-F, Tao W-J, Zhou L-Y, Nagahama Y, Wang D-S (2014) Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile Tilapia. Endocrinology 155:1476–1488. https://doi.org/10.1210/en.2013-1959

    Article  CAS  Google Scholar 

  17. Wu G-C, Chang C-F (2013) Oocytes survive in the testis by altering the soma fate from male to female in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 88:19. https://doi.org/10.1095/biolreprod.112.104398

    Article  CAS  Google Scholar 

  18. Adolfi MC, Nakajima RT, Nobrega RH, Schartl M (2019) Intersex, hermaphroditism, and gonadal plasticity in vertebrates: evolution of the Mullerian duct and amh/amhr2 signaling. Annu Rev Anim Biosci 7:149–172. https://doi.org/10.1146/annurev-animal-020518-114955

    Article  CAS  Google Scholar 

  19. Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M (2015) foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 80(349):328–331. https://doi.org/10.1126/science.aaa2657

    Article  CAS  Google Scholar 

  20. Gemmell NJ, Todd EV, Goikoetxea A, Ortega-Recalde O, Hore TA (2019) Natural sex change in fish. Current topics in developmental biology, 1st edn. Elsevier Inc., Amsterdam, pp 71–117

    Google Scholar 

  21. Avise JC, Mank JE (2009) Evolutionary perspectives on hermaphroditism in fishes. Sex Dev 3:152–163. https://doi.org/10.1159/000223079

    Article  CAS  Google Scholar 

  22. Maitre D, Selmoni OM, Uppal A, Marques da Cunha L, Wilkins LGE, Roux J, Mobley KB, Castro I, Knörr S, Robinson-Rechavi M, Wedekind C (2017) Sex differentiation in grayling (Salmonidae) goes through an all-male stage and is delayed in genetic males who instead grow faster. Sci Rep 7:15024. https://doi.org/10.1038/s41598-017-14905-9

    Article  CAS  Google Scholar 

  23. Miranda LA, Chalde T, Elisio M, Strussmann CA (2013) Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. Gen Comp Endocrinol 192:45–54. https://doi.org/10.1016/j.ygcen.2013.02.034

    Article  CAS  Google Scholar 

  24. Fernandino JI, Hattori RS, Moreno Acosta OD, Strüssmann CA, Somoza GM (2013) Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen Comp Endocrinol 192:36–44. https://doi.org/10.1016/j.ygcen.2013.05.024

    Article  CAS  Google Scholar 

  25. Cotta JBHD (2016) The reversible sex of gonochoristic fish: insights and consequences. Sex Dev. https://doi.org/10.1159/000452362

    Article  Google Scholar 

  26. Geffroy B, Bardonnet A (2016) Sex differentiation and sex determination in eels: consequences for management. Fish Fish 17:375–398. https://doi.org/10.1111/faf.12113

    Article  Google Scholar 

  27. Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  CAS  Google Scholar 

  28. Zhang J, Gilbert D, Gooday A, Levin L, Naqvi SWA, Middelburg JJ, Scranton M, Ekau W, Pena A, Dewitte B (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7:1443–1467. https://doi.org/10.5194/bg-7-1443-2010

    Article  CAS  Google Scholar 

  29. Gray JS, Wu RSS, Ying YO (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279. https://doi.org/10.3354/meps238249

    Article  Google Scholar 

  30. Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J (2018) Declining oxygen in the global ocean and coastal waters. Science (80-) 359:eaam7240. https://doi.org/10.1126/science.aam7240

    Article  CAS  Google Scholar 

  31. Shang EHH, Yu RMK, Wu RSS (2006) Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40:3118–3122. https://doi.org/10.1021/es0522579

    Article  CAS  Google Scholar 

  32. Breitburg DL, Hondorp DW, Davias La, Diaz RJ (2009) Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Ann Rev Mar Sci 1:329–349. https://doi.org/10.1146/annurev.marine.010908.163754

    Article  Google Scholar 

  33. Thomas P, Rahman MS (2012) Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc R Soc B Biol Sci 279:28–38. https://doi.org/10.1098/rspb.2011.0529

    Article  CAS  Google Scholar 

  34. Pollock MS, Dubé MG, Schryer R (2010) Investigating the link between pulp mill effluent and endocrine disruption: attempts to explain the presence of intersex fish in the Wabigoon River, Ontario, Canada. Environ Toxicol Chem 29:952–965. https://doi.org/10.1002/etc.118

    Article  CAS  Google Scholar 

  35. Cheung CHY, Chiu JMY, Wu RSS (2014) Hypoxia turns genotypic female medaka fish into phenotypic males. Ecotoxicology 23:1260–1269. https://doi.org/10.1007/s10646-014-1269-8

    Article  CAS  Google Scholar 

  36. Ou M, Hamilton T, Eom J, Lyall E, Gallup J, Jiang A, Lee J, Close D, Yun S-S, Brauner C (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nat Clim Chang 5:950–955. https://doi.org/10.1038/nclimate2694

    Article  CAS  Google Scholar 

  37. Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Chang Biol 22:974–989. https://doi.org/10.1111/gcb.13167

    Article  Google Scholar 

  38. Lefevre S (2016) Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv Physiol 4:1–31. https://doi.org/10.1093/conphys/cow009

    Article  CAS  Google Scholar 

  39. Schunter C, Welch MJ, Ryu T, Zhang H, Berumen ML, Nilsson GE, Munday PL, Ravasi T (2016) Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat Clim Chang 6:1014–1018. https://doi.org/10.1038/nclimate3087

    Article  CAS  Google Scholar 

  40. Rubin DA (1985) Effect of ph on sex ratio in Cichlids and a Poecilliid (Teleostei). Copeia 1985:233–235. https://doi.org/10.2307/1444818

    Article  Google Scholar 

  41. Römer U, Beisenherz W (1996) Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei). J Fish Biol 48:714–725. https://doi.org/10.1111/j.1095-8649.1996.tb01467.x

    Article  Google Scholar 

  42. Reddon AR, Hurd PL (2013) Water pH during early development influences sex ratio and male morph in a West African cichlid fish, Pelvicachromis pulcher. Zoology 116:139–143. https://doi.org/10.1016/j.zool.2012.11.001

    Article  Google Scholar 

  43. Karakatsouli N, Papoutsoglou SE, Pizzonia G, Tsatsos G, Tsopelakos A, Chadio S, Kalogiannis D, Dalla C, Polissidis A, Papadopoulou-Daifoti Z (2007) Effects of light spectrum on growth and physiological status of gilthead seabream Sparus aurata and rainbow trout Oncorhynchus mykiss reared under recirculating system conditions. Aquac Eng 36:302–309. https://doi.org/10.1016/j.aquaeng.2007.01.005

    Article  Google Scholar 

  44. Villamizar N, Garcia-Alcazar A, Sanchez Vazquez FJ (2009) Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292:80–86. https://doi.org/10.1016/j.aquaculture.2009.03.045

    Article  Google Scholar 

  45. Brown EE, Baumann H, Conover DO (2014) Temperature and photoperiod effects on sex determination in a fish. J Exp Mar Bio Ecol 461:39–43. https://doi.org/10.1016/j.jembe.2014.07.009

    Article  Google Scholar 

  46. Corona-Herrera GA, Arranz SE, Martínez-Palacios CA, Navarrete-Ramírez P, Toledo-Cuevas EM, Valdez-Alarcón JJ, Martínez-Chávez CC (2018) Experimental evidence of masculinization by continuous illumination in a temperature sex determination teleost (Atherinopsidae) model: is oxidative stress involved? J Fish Biol 93:229–237. https://doi.org/10.1111/jfb.13651

    Article  CAS  Google Scholar 

  47. Hayasaka O, Takeuchi Y, Shiozaki K, Anraku K, Kotani T (2019) Green light irradiation during sex differentiation induces female-to-male sex reversal in the medaka Oryzias latipes. Sci Rep 9:2383. https://doi.org/10.1038/s41598-019-38908-w

    Article  Google Scholar 

  48. Baroiller JF, D’Cotta H, Saillant E (2009) Environmental effects on fish sex determination and differentiation. Sex Dev 3:118–135. https://doi.org/10.1159/000223077

    Article  CAS  Google Scholar 

  49. Ospina-Alvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3:e2837. https://doi.org/10.1371/journal.pone.0002837

    Article  CAS  Google Scholar 

  50. Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7:115–125. https://doi.org/10.1159/000342009

    Article  CAS  Google Scholar 

  51. Goikoetxea A, Todd EV, Gemmell NJ (2017) Stress and sex: does cortisol mediate sex change in fish? Reproduction 154:R149–R160. https://doi.org/10.1530/REP-17-0408

    Article  CAS  Google Scholar 

  52. Strüssmann CA, Conover DO, Somoza GM, Miranda LA (2010) Implications of climate change for the reproductive capacity and survival of New World silversides (family Atherinopsidae). J Fish Biol 77:1818–1834. https://doi.org/10.1111/j.1095-8649.2010.02780.x

    Article  Google Scholar 

  53. Yamamoto Y, Zhang Y, Sarida M, Hattori RS, Strüssmann CA (2014) Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0102574

    Article  CAS  Google Scholar 

  54. Hattori RS, Somoza GM, Fernandino JI, Colautti DC, Miyoshi K, Gong Z, Yamamoto Y, Strüssmann CA (2019) The duplicated y-specific amhy gene is conserved and linked to maleness in silversides of the genus Odontesthes. Genes (Basel) 10:E679. https://doi.org/10.3390/genes10090679

    Article  CAS  Google Scholar 

  55. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614. https://doi.org/10.1016/j.cub.2009.05.046

    Article  CAS  Google Scholar 

  56. Penman DJ, Piferrer F (2008) Fish Gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:16–34. https://doi.org/10.1080/10641260802324610

    Article  CAS  Google Scholar 

  57. Hattori RS, Fernandino JI, Kishil A, Kimura H, Kinno T, Oura M, Somoza GM, Yokota M, Strüssmann CA, Watanabe S (2009) Cortisol-induced masculinization: does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS ONE 4(8):e6548. https://doi.org/10.1371/journal.pone.0006548

    Article  CAS  Google Scholar 

  58. Adolfi MC, Fischer P, Herpin A, Regensburger M, Kikuchi M, Tanaka M, Schartl M (2019) Increase of cortisol levels after temperature stress activates dmrt1a causing female-to-male sex reversal and reduced germ cell number in medaka. Mol Reprod Dev 86:1405–1417. https://doi.org/10.1002/mrd.23177

    Article  CAS  Google Scholar 

  59. Wessels S, Hörstgen-Schwark G (2007) Selection experiments to increase the proportion of males in Nile tilapia (Oreochromis niloticus) by means of temperature treatment. Aquaculture 272:80–87. https://doi.org/10.1016/j.aquaculture.2007.08.009

    Article  Google Scholar 

  60. Wessels S, Sharifi RA, Luehmann LM, Rueangsri S, Krause I, Pach S, Hoerstgen-Schwark G, Knorr C (2014) Allelic variant in the anti-müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected nile tilapia line. PLoS ONE 9(8):e104795. https://doi.org/10.1371/journal.pone.0104795

    Article  CAS  Google Scholar 

  61. Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260. https://doi.org/10.1038/ng.2890

    Article  CAS  Google Scholar 

  62. Ribas L, Liew WC, Díaz N, Sreenivasan R, Orbán L, Piferrer F (2017) Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. Proc Natl Acad Sci USA 114:E941–E950. https://doi.org/10.1073/pnas.1609411114

    Article  CAS  Google Scholar 

  63. Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L (2012) Polygenic sex determination system in zebrafish. PLoS ONE 7:e34397. https://doi.org/10.1371/journal.pone.0034397

    Article  CAS  Google Scholar 

  64. Zhang Y, Hattori RS, Sarida M, Garcia EL, Strussmann CA, Yamamoto Y (2018) Expression profiles of amhy and major sex-related genes during gonadal sex differentiation and their relation with genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. Gen Comp Endocrinol 265:196–201. https://doi.org/10.1016/j.ygcen.2018.03.013

    Article  CAS  Google Scholar 

  65. Bull JJ (1980) Sex determination in reptiles. Q Rev Biol 55:3–21. https://doi.org/10.1086/411613

    Article  Google Scholar 

  66. Holleley CE, Sarre SD, O’Meally D, Georges A (2016) Sex reversal in reptiles: reproductive oddity or powerful driver of evolutionary change? Sex Dev 10:279–287. https://doi.org/10.1159/000450972

    Article  CAS  Google Scholar 

  67. Xiong Y, Wang S, Gui J-F, Mei J (2020) Artificially induced sex-reversal leads to transition from genetic to temperature-dependent sex determination in fish species. Sci China Life Sci 63:157–159. https://doi.org/10.1007/s11427-019-1568-7

    Article  Google Scholar 

  68. Li X-Y, Gui J-F (2018) Diverse and variable sex determination mechanisms in vertebrates. Sci China Life Sci 61:1503–1514. https://doi.org/10.1007/s11427-018-9415-7

    Article  Google Scholar 

  69. Hattori RS, Gould RJ, Fujioka T, Saito T, Kurita J, Strüssmann CA, Yokota M, Watanabe S (2007) Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and dmrt1 expression profile. Sex Dev 1:138–146. https://doi.org/10.1159/000100035

    Article  CAS  Google Scholar 

  70. Cotton S, Wedekind C (2009) Population consequences of environmental sex reversal. Conserv Biol 23:196–206. https://doi.org/10.1111/j.1523-1739.2008.01053.x

    Article  Google Scholar 

  71. Herpin A, Schartl M (2015) Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 16:1260–1274. https://doi.org/10.15252/embr.201540667

    Article  CAS  Google Scholar 

  72. Fernandino JI, Hattori RS (2019) Sex determination in neotropical fish: implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 273:172–183. https://doi.org/10.1016/j.ygcen.2018.07.002

    Article  CAS  Google Scholar 

  73. Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, Schmid F, Priebe S, Liehr T, Gorlach M, Than ME, Hiller M, Kestler HA, Volff J-N, Schartl M, Cellerino A, Englert C, Platzer M (2015) Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527–1538. https://doi.org/10.1016/j.cell.2015.10.071

    Article  CAS  Google Scholar 

  74. Koyama T, Nakamoto M, Morishima K, Yamashita R, Yamashita T, Sasaki K, Kuruma Y, Mizuno N, Suzuki M, Okada Y, Ieda R, Uchino T, Tasumi S, Hosoya S, Uno S, Koyama J, Toyoda A, Kikuchi K, Sakamoto T (2019) A SNP in a steroidogenic enzyme is associated with phenotypic sex in seriola fishes. Curr Biol 29:1901–1909.e8. https://doi.org/10.1016/j.cub.2019.04.069

    Article  CAS  Google Scholar 

  75. Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, Wen M, Busnel J-M, Bobe J, Concordet J-P, Parrinello H, Journot L, Klopp C, Lluch J, Roques C, Postlethwait J, Schartl M, Herpin A, Guiguen Y (2019) Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLOS Genet 15:e1008013. https://doi.org/10.1371/journal.pgen.1008013

    Article  CAS  Google Scholar 

  76. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 109:2955–2959. https://doi.org/10.1073/pnas.1018392109

    Article  Google Scholar 

  77. Yamamoto Y, Hattori RS, Patiño R, Strüssmann CA (2019) Chapter Two: Environmental regulation of sex determination in fishes: insights from atheriniformes. In: Capel BBT-CT in DB (ed) Sex determination in vertebrates. Academic Press, pp 49–69

  78. Bertho S, Herpin A, Branthonne A, Jouanno E, Yano A, Nicol B, Muller T, Pannetier M, Pailhoux E, Miwa M, Yoshizaki G, Schartl M, Guiguen Y (2018) The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc Natl Acad Sci 115:12781–12786. https://doi.org/10.1073/pnas.1803826115

    Article  CAS  Google Scholar 

  79. Zhang X, Li M, Ma H, Liu X, Shi H, Li M, Wang D (2017) Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile Tilapia. Endocrinology 158:2634–2647. https://doi.org/10.1210/en.2017-00127

    Article  CAS  Google Scholar 

  80. Warr N, Greenfield A (2012) The molecular and cellular basis of gonadal sex reversal in mice and humans. Wiley Interdiscip Rev Dev Biol 1:559–577. https://doi.org/10.1002/wdev.42

    Article  CAS  Google Scholar 

  81. Chi W, Gao Y, Hu Q, Guo W, Li D (2017) Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus. PLoS ONE 12:e0173974. https://doi.org/10.1371/journal.pone.0173974

    Article  CAS  Google Scholar 

  82. Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M (2018) Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol 30:e12590. https://doi.org/10.1111/jne.12590

    Article  CAS  Google Scholar 

  83. Young G, Kusakabe M, Nakamura I, Lokman PM, Goetz FW (2005) Gonadal steroidogenesis in teleost fish. Hormones and their receptors in fish reproduction. World Scientific, Singapore, pp 155–223

    Chapter  Google Scholar 

  84. Levavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ (2010) Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 165:412–437. https://doi.org/10.1016/j.ygcen.2009.07.019

    Article  CAS  Google Scholar 

  85. Molés G, Carrillo M, Mañanós E, Mylonas CC, Zanuy S (2007) Temporal profile of brain and pituitary GnRHs, GnRH-R and gonadotropin mRNA expression and content during early development in European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol 150:75–86. https://doi.org/10.1016/j.ygcen.2006.07.012

    Article  CAS  Google Scholar 

  86. Molés G, Gómez A, Carrillo M, Rocha A, Mylonas CC, Zanuy S (2011) Determination of fsh quantity and bioactivity during sex differentiation and oogenesis in European Sea Bass. Biol Reprod 85:848–857. https://doi.org/10.1095/biolreprod.111.091868

    Article  CAS  Google Scholar 

  87. Miranda L (2003) Gonadotropin-releasing hormone neuronal development during the sensitive period of temperature sex determination in the pejerrey fish, Odontesthes bonariensis. Gen Comp Endocrinol 132:444–453. https://doi.org/10.1016/S0016-6480(03)00117-5

    Article  CAS  Google Scholar 

  88. Chen W, Ge W (2012) Ontogenic expression profiles of Gonadotropins (fshb and lhb) and growth hormone (gh) during sexual differentiation and puberty onset in female Zebrafish. Biol Reprod 86:1–11. https://doi.org/10.1095/biolreprod.111.094730

    Article  CAS  Google Scholar 

  89. Miranda LA, Strüssmann CA, Somoza GM (2001) Immunocytochemical identification of gth1 and gth2 cells during the temperature-sensitive period for sex determination in pejerrey, Odontesthes bonariensis. Gen Comp Endocrinol 124:45–52. https://doi.org/10.1006/gcen.2001.7687

    Article  CAS  Google Scholar 

  90. Montserrat N, González A, Méndez E, Piferrer F, Planas JV (2004) Effects of follicle stimulating hormone on estradiol-17β production and P-450 aromatase (CYP19) activity and mRNA expression in brown trout vitellogenic ovarian follicles in vitro. Gen Comp Endocrinol 137:123–131. https://doi.org/10.1016/j.ygcen.2004.02.011

    Article  CAS  Google Scholar 

  91. Yamaguchi T, Yamaguchi S, Hirai T, Kitano T (2007) Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 359:935–940. https://doi.org/10.1016/j.bbrc.2007.05.208

    Article  CAS  Google Scholar 

  92. Murozumi N, Nakashima R, Hirai T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Kitano T (2014) Loss of follicle-stimulating hormone receptor function causes masculinization and suppression of ovarian development in genetically female medaka. Endocrinology 155:3136–3145. https://doi.org/10.1210/en.2013-2060

    Article  CAS  Google Scholar 

  93. Blázquez M, Somoza GM (2010) Fish with thermolabile sex determination (TSD) as models to study brain sex differentiation. Gen Comp Endocrinol 166:470–477. https://doi.org/10.1016/j.ygcen.2009.10.004

    Article  CAS  Google Scholar 

  94. Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W (2020) Gnrh3 regulates pgc proliferation and sex differentiation in developing zebrafish. Endocrinology 161. https://doi.org/10.1210/endocr/bqz024

  95. Fernandino JI, Hattori RS, Kishii A, Strüssmann CA, Somoza GM (2012) The cortisol and androgen pathways cross talk in high temperature-induced masculinization: the 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology 153:6003–6011. https://doi.org/10.1210/en.2012-1517

    Article  CAS  Google Scholar 

  96. Castañeda Cortés DC, Arias Padilla LF, Langlois VS, Somoza GM, Fernandino JI (2019) The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 146:172866. https://doi.org/10.1242/dev.172866

    Article  CAS  Google Scholar 

  97. Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T, Kamei Y, Kitano T (2010) High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev 77:679–686. https://doi.org/10.1002/mrd.21203

    Article  CAS  Google Scholar 

  98. Kovács KJ (2013) CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat 54:25–33. https://doi.org/10.1016/j.jchemneu.2013.05.003

    Article  CAS  Google Scholar 

  99. Aguilera G, Liu Y (2012) The molecular physiology of CRH neurons. Front Neuroendocrinol 33:67–84. https://doi.org/10.1016/j.yfrne.2011.08.002

    Article  CAS  Google Scholar 

  100. Uchimura T, Hara S, Yazawa T, Kamei Y, Kitano T (2019) Involvement of heat shock proteins on the transcriptional regulation of corticotropin-releasing hormone in medaka. Front Endocrinol (Lausanne) 10:529. https://doi.org/10.3389/fendo.2019.00529

    Article  Google Scholar 

  101. Ma X-M, Aguilera G (1999) Differential regulation of corticotropin-releasing hormone and vasopressin transcription by glucocorticoids. Endocrinology 140:5642–5650. https://doi.org/10.1210/endo.140.12.7214

    Article  CAS  Google Scholar 

  102. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:605–620. https://doi.org/10.1016/j.neuron.2015.07.002

    Article  CAS  Google Scholar 

  103. Piferrer F, Anastasiadi D, Valdivieso A, Sánchez-Baizán N, Moraleda-Prados J, Ribas L (2019) The model of the conserved epigenetic regulation of sex. Front Genet 10:1–13. https://doi.org/10.3389/fgene.2019.00857

    Article  CAS  Google Scholar 

  104. Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447. https://doi.org/10.1371/journal.pgen.1002447

    Article  CAS  Google Scholar 

  105. Wang YY, Sun LX, Zhu JJ, Zhao Y, Wang H, Liu HJ, Ji XS (2017) Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J Therm Biol 69:76–84. https://doi.org/10.1016/j.jtherbio.2017.06.006

    Article  CAS  Google Scholar 

  106. Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH, Ma DY, Zhang PJ (2014) CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J Fish Biol 84:193–205. https://doi.org/10.1111/jfb.12277

    Article  CAS  Google Scholar 

  107. Sun LX, Wang YY, Zhao Y, Wang H, Li N, Ji XS (2016) Global DNA methylation changes in Nile tilapia gonads during high temperature-induced masculinization. PLoS ONE 11:1–16. https://doi.org/10.1371/journal.pone.0158483

    Article  CAS  Google Scholar 

  108. Zhou H, Zhuang Z-X, Sun Y-Q, Chen Q, Zheng X-Y, Liang Y-T, Mahboob S, Wang Q, Zhang R, Al-Ghanim KA, Shao C-W, Li Y-J (2019) Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes. PLoS ONE 14:e0221641. https://doi.org/10.1371/journal.pone.0221641

    Article  CAS  Google Scholar 

  109. Dong J, Xiong L, Ding H, Jiang H, Zan J, Nie L (2019) Characterization of deoxyribonucleic methylation and transcript abundance of sex-related genes during temperature-dependent sex determination in Mauremys reevesii. Biol Reprod 1:ioz147. https://doi.org/10.1093/biolre/ioz147

    Article  Google Scholar 

  110. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028. https://doi.org/10.1016/j.cell.2011.08.008

    Article  CAS  Google Scholar 

  111. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  Google Scholar 

  112. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  Google Scholar 

  113. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. https://doi.org/10.1126/science.1063127

    Article  CAS  Google Scholar 

  114. Díaz N, Piferrer F (2015) Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics 1–16: https://doi.org/10.1186/s12864-015-1862-0

    Article  Google Scholar 

  115. Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W (2013) Epigenetic modifications during sex change repress Gonadotropin stimulation of Cyp19a1a in a Teleost Ricefield Eel (Monopterus albus). Endocrinology 154:2881–2890. https://doi.org/10.1210/en.2012-2220

    Article  CAS  Google Scholar 

  116. Mitchell NJ, Janzen FJ (2010) Temperature-dependent sex determination and contemporary climate change. Sex Dev 4:129–140. https://doi.org/10.1159/000282494

    Article  CAS  Google Scholar 

  117. Refsnider JM, Janzen FJ (2016) Temperature-dependent sex determination under rapid anthropogenic environmental change: evolution at a turtle’s pace? J Hered 107:61–70. https://doi.org/10.1093/jhered/esv053

    Article  Google Scholar 

  118. Conover DO (1984) Adaptive significance of temperature-dependent sex determination in a fish. Am Nat 123:297–313

    Article  Google Scholar 

  119. Honeycutt JL, Deck CA, Miller SC, Severance ME, Atkins EB, Luckenbach JA, Buckel JA, Daniels HV, Rice JA, Borski RJ, Godwin J (2019) Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-42944-x

    Article  CAS  Google Scholar 

  120. Kloas W, Urbatzka R, Opitz R, Sven W, Behrends T, Hofmann F, Jagnytsch O, Kroupova H, Lorenz C, Neumann N, Pietsch C, Trubiroha A, Van BC, Wiedemann C, Lutz I (2009) Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163:187–200. https://doi.org/10.1111/j.1749-6632.2009.04453.x

    Article  CAS  Google Scholar 

  121. Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32:32–48. https://doi.org/10.1002/etc.2043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Agencia Nacional de Promoción Científica y Tecnológica (Grants PICT 2015-2501 to J.I.F. and PICT 2016-0747 to P.H.S.-M.) and to Sao Paulo Research Foundation (FAPESP2014/50790-0 and 2018/20200-8 to R.S.H.). D.C.C.C. and L.F.A.P. were supported by a PhD fellowship from the National Research Council (CONICET). J.I.F. and P.H.S.-M. are members of the career of scientific researcher at the CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Fernandino.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, R.S., Castañeda-Cortés, D.C., Arias Padilla, L.F. et al. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell. Mol. Life Sci. 77, 4223–4236 (2020). https://doi.org/10.1007/s00018-020-03532-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03532-9

Keywords

Navigation