Skip to main content
Log in

Adenosine-to-inosine RNA editing in the immune system: friend or foe?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Our body expresses sensors to detect pathogens through the recognition of expressed molecules, including nucleic acids, lipids, and proteins, while immune tolerance prevents an overreaction with self and the development of autoimmune disease. Adenosine (A)-to-inosine (I) RNA editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a post-transcriptional modification that can potentially occur at over 100 million sites in the human genome, mainly in Alu repetitive elements that preferentially form a double-stranded RNA (dsRNA) structure. A-to-I conversion within dsRNA, which may induce a structural change, is required to escape from the host immune system, given that endogenous dsRNAs transcribed from Alu repetitive elements are potentially recognized by melanoma differentiation-associated protein 5 (MDA5) as non-self. Of note, loss-of-function mutations in the ADAR1 gene cause Aicardi–Goutières syndrome, a congenital autoimmune disease characterized by encephalopathy and a type I interferon (IFN) signature. However, the loss of ADAR1 in cancer cells with an IFN signature induces lethality via the activation of protein kinase R in addition to MDA5. This makes cells more sensitive to immunotherapy, highlighting the opposing immune status of autoimmune diseases (overreaction) and cancer (tolerance). In this review, we provide an overview of insights into two opposing aspects of RNA editing that functions as a modulator of the immune system in autoimmune diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A:

Adenosine

ADAR:

Adenosine deaminase acting on RNA

AGS:

Aicardi-Goutières syndrome

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APC:

Antigen-presenting cell

AZIN1:

Antizyme inhibitor 1

COPA:

Coatomer protein complex, subunit alpha

dsRNA:

Double-stranded RNA

DC:

Dendritic cell

DNMT:

DNA methyltransferase

DSH:

Dyschromatosis symmetrica hereditaria

eIF2α:

Eukaryotic initiation factor 2 alpha

EIF2AK2:

Eukaryotic translation initiation factor 2 alpha kinase 2

ERV:

Endogenous retroviruse

G:

Glycine

GABAA :

Type A gamma-aminobutyric acid

GABRA3:

GABAA receptor subunit α-3

I:

Inosine

IFN:

Interferon

ISG:

IFN-stimulated gene

KI:

Knock-in

KO:

Knockout

LINE:

Long interspersed element

LTR:

Long terminal repeat

MAVS:

Mitochondrial anti-viral-signaling protein

MDA5:

Melanoma differentiation-associated protein 5

MHC:

Major histocompatibility complex

miRNA:

MicroRNA

mTEC:

Medullary thymic epithelial cell

m7G:

5′Triphosphate-linked methylguanosine

N:

Asparagine

N1:

5′-Terminal nucleotide

OAS:

Oligoadenylate synthetase

ORF:

Open-reading frame

PAS:

Periodic acid-Schiff

PBMC:

Peripheral blood mononuclear cell

PD-L1:

Programmed cell-death ligand-1

PD-1:

Programmed cell death 1

PKR:

Protein kinase R

Pol:

Polymerase

Q:

Glutamine

R:

Arginine

RA:

Rheumatoid arthritis

RHOQ:

Ras Homolog Family Member Q

RIG-I:

Retinoic acid-inducible gene I

RLR:

RIG-I-like receptor

PRR:

Pattern recognition receptor

S:

Serine

SINE:

Short interspersed element

SLE:

Systemic lupus erythematosus

TCGA:

The Cancer Genome Atlas

TCR:

T-cell receptor

UTR:

Untranslated region

U:

Uridine

2′OMe:

2′-O-Methylation

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  2. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295. https://doi.org/10.1126/science.1183021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–40. https://doi.org/10.1016/j.jaci.2009.09.017

    Article  PubMed  Google Scholar 

  4. Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006957

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28(1):18–28. https://doi.org/10.1016/j.immuni.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  6. Okazaki T, Honjo T (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27(4):195–201. https://doi.org/10.1016/j.it.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  7. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19(7):813–824. https://doi.org/10.1093/intimm/dxm057

    Article  CAS  PubMed  Google Scholar 

  8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing C (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  9. Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15(5):415–422. https://doi.org/10.1038/ni.2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703. https://doi.org/10.1038/nrg2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedli M, Trono D (2015) The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31:429–451. https://doi.org/10.1146/annurev-cellbio-100814-125514

    Article  CAS  PubMed  Google Scholar 

  12. Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL, Dao Thi VL, Shilvock AR, Hoffmann HH, Rosenberg BR, Rice CM (2018) Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172(4):811–824. https://doi.org/10.1016/j.cell.2017.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti A, Carnevali D, Bollati V, Fustinoni S, Pellegrini M, Dieci G (2015) Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data. Nucleic Acids Res 43(2):817–835. https://doi.org/10.1093/nar/gku1361

    Article  CAS  PubMed  Google Scholar 

  14. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 101(Suppl 2):14572–14579. https://doi.org/10.1073/pnas.0404838101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740. https://doi.org/10.1016/j.molcel.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  16. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682. https://doi.org/10.1016/j.cell.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  17. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172. https://doi.org/10.1038/nature04193

    Article  CAS  PubMed  Google Scholar 

  18. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. https://doi.org/10.1038/ni1243

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad S, Mu X, Yang F, Greenwald E, Park JW, Jacob E, Zhang CZ, Hur S (2018) Breaching self-tolerance to alu duplex RNA underlies MDA5-mediated inflammation. Cell 172(4):797–810. https://doi.org/10.1016/j.cell.2017.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974–986. https://doi.org/10.1016/j.cell.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ranoa DR, Parekh AD, Pitroda SP, Huang X, Darga T, Wong AC, Huang L, Andrade J, Staley JP, Satoh T, Akira S, Weichselbaum RR, Khodarev NN (2016) Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 7(18):26496–26515. https://doi.org/10.18632/oncotarget.8420

    Article  PubMed  PubMed Central  Google Scholar 

  22. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O'Brien C, De Carvalho DD (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162(5):961–973. https://doi.org/10.1016/j.cell.2015.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J (2016) Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA 113(3):596–601. https://doi.org/10.1073/pnas.1515152113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lassig C, Hopfner KP (2017) Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. J Biol Chem 292(22):9000–9009. https://doi.org/10.1074/jbc.R117.788398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24(5):559–565. https://doi.org/10.1038/nbt1205

    Article  CAS  PubMed  Google Scholar 

  26. Reich DP, Bass BL (2019) Mapping the dsRNA world. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a035352

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schuberth-Wagner C, Ludwig J, Bruder AK, Herzner AM, Zillinger T, Goldeck M, Schmidt T, Schmid-Burgk JL, Kerber R, Wolter S, Stumpel JP, Roth A, Bartok E, Drosten C, Coch C, Hornung V, Barchet W, Kummerer BM, Hartmann G, Schlee M (2015) A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1–2'O-methylated self RNA. Immunity 43(1):41–51. https://doi.org/10.1016/j.immuni.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walkley CR, Li JB (2017) Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol 18(1):205. https://doi.org/10.1186/s13059-017-1347-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V (2011) Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12(2):137–143. https://doi.org/10.1038/ni.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846. https://doi.org/10.1146/annurev.biochem.71.110601.135501

    Article  CAS  PubMed  Google Scholar 

  31. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. https://doi.org/10.1146/annurev-biochem-060208-105251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samuel CE (2019) Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 294(5):1710–1720. https://doi.org/10.1074/jbc.TM118.004166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K (1994) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269(18):13480–13489

    CAS  PubMed  Google Scholar 

  34. Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci USA 91(24):11457–11461. https://doi.org/10.1073/pnas.91.24.11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connell MA, Keller W (1994) Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci USA 91(22):10596–10600. https://doi.org/10.1073/pnas.91.22.10596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15(3):1389–1397. https://doi.org/10.1128/mcb.15.3.1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerber A, O'Connell MA, Keller W (1997) Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3(5):453–463

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lai F, Chen CX, Carter KC, Nishikura K (1997) Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol 17(5):2413–2424. https://doi.org/10.1128/mcb.17.5.2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379(6564):460–464. https://doi.org/10.1038/379460a0

    Article  CAS  PubMed  Google Scholar 

  40. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6(5):755–767. https://doi.org/10.1017/s1355838200000170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH (1996) RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271(50):31795–31798. https://doi.org/10.1074/jbc.271.50.31795

    Article  CAS  PubMed  Google Scholar 

  42. Desterro JM, Keegan LP, Lafarga M, Berciano MT, O'Connell M, Carmo-Fonseca M (2003) Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116(Pt 9):1805–1818. https://doi.org/10.1242/jcs.00371

    Article  CAS  PubMed  Google Scholar 

  43. Eckmann CR, Neunteufl A, Pfaffstetter L, Jantsch MF (2001) The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol Biol Cell 12(7):1911–1924. https://doi.org/10.1091/mbc.12.7.1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15(10):5376–5388. https://doi.org/10.1128/mcb.15.10.5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J (2001) CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 21(22):7862–7871. https://doi.org/10.1128/MCB.21.22.7862-7871.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maas S, Gommans WM (2009) Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res 37(17):5822–5829. https://doi.org/10.1093/nar/gkp599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sansam CL, Wells KS, Emeson RB (2003) Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci USA 100(24):14018–14023. https://doi.org/10.1073/pnas.2336131100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B Pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292(10):4326–4335. https://doi.org/10.1074/jbc.M117.779868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, Liu KI, Zhang R, Ramaswami G, Ariyoshi K, Gupte A, Keegan LP, George CX, Ramu A, Huang N, Pollina EA, Leeman DS, Rustighi A, Goh YPS, Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida, Biospecimen Collection Source Site N, Biospecimen Collection Source Site R, Biospecimen Core Resource V, Brain Bank Repository-University of Miami Brain Endowment B, Leidos Biomedical-Project M, Study E, Genome Browser Data I, Visualization EBI, Genome Browser Data I, Visualization-Ucsc Genomics Institute UoCSC, Chawla A, Del Sal G, Peltz G, Brunet A, Conrad DF, Samuel CE, O'Connell MA, Walkley CR, Nishikura K, Li JB (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550(7675):249–254. https://doi.org/10.1038/nature24041

    Article  Google Scholar 

  50. Mladenova D, Barry G, Konen LM, Pineda SS, Guennewig B, Avesson L, Zinn R, Schonrock N, Bitar M, Jonkhout N, Crumlish L, Kaczorowski DC, Gong A, Pinese M, Franco GR, Walkley CR, Vissel B, Mattick JS (2018) Adar3 Is Involved in Learning and Memory in Mice. Front Neurosci 12:243. https://doi.org/10.3389/fnins.2018.00243

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nakahama T, Kato Y, Kim JI, Vongpipatana T, Suzuki Y, Walkley CR, Kawahara Y (2018) ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep. https://doi.org/10.15252/embr.201846303

    Article  PubMed  PubMed Central  Google Scholar 

  52. Basilio C, Wahba AJ, Lengyel P, Speyer JF, Ochoa S (1962) Synthetic polynucleotides and the amino acid code. V. Proc Natl Acad Sci USA 48:613–616. https://doi.org/10.1073/pnas.48.4.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF (2019) Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47(1):3–14. https://doi.org/10.1093/nar/gky1163

    Article  CAS  PubMed  Google Scholar 

  54. Eisenberg E, Levanon EY (2018) A-to-I RNA editing - immune protector and transcriptome diversifier. Nat Rev Genet 19(8):473–490. https://doi.org/10.1038/s41576-018-0006-1

    Article  CAS  PubMed  Google Scholar 

  55. Porath HT, Knisbacher BA, Eisenberg E, Levanon EY (2017) Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 18(1):185. https://doi.org/10.1186/s13059-017-1315-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387(6630):303–308. https://doi.org/10.1038/387303a0

    Article  CAS  PubMed  Google Scholar 

  57. Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y, Liu M, Yuan YF, Fu L, Kong KL, Qi L, Li Y, Zhang N, Tong AH, Kwong DL, Man K, Lo CM, Lok S, Tenen DG, Guan XY (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19(2):209–216. https://doi.org/10.1038/nm.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Kim KY, Park SY, Lee DW, Won JK, Jeong SY, Park KJ, Park JG, Kang GH, Seo JS, Kim JI, Kim TY (2014) RNA editing in RHOQ promotes invasion potential in colorectal cancer. J Exp Med 211(4):613–621. https://doi.org/10.1084/jem.20132209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75(7):1361–1370. https://doi.org/10.1016/0092-8674(93)90622-w

    Article  CAS  PubMed  Google Scholar 

  60. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301(5634):832–836. https://doi.org/10.1126/science.1086763

    Article  CAS  PubMed  Google Scholar 

  61. Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Kohr G, Higuchi M, Fatemi-Shariatpanahi H, Harden B, Yue DT, Soong TW (2012) RNA editing of the IQ domain in Ca(v)13 channels modulates their Ca(2)(+)-dependent inactivation. Neuron 73(2):304–316. https://doi.org/10.1016/j.neuron.2011.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ohlson J, Pedersen JS, Haussler D, Ohman M (2007) Editing modifies the GABA(A) receptor subunit alpha3. RNA 13(5):698–703. https://doi.org/10.1261/rna.349107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A, Burnashev N, Jensen V, Hvalby O, Sprengel R, Seeburg PH (1999) Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 2(1):57–64. https://doi.org/10.1038/4561

    Article  CAS  PubMed  Google Scholar 

  64. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81. https://doi.org/10.1038/35017558

    Article  CAS  PubMed  Google Scholar 

  65. Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, Bale TL, Blendy JA, Nishikura K (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28(48):12834–12844. https://doi.org/10.1523/JNEUROSCI.3896-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E, Nagatomo I, Yamashita Y, Abe T, Nishikura K, Kumanogoh A, Hashimoto K, Kawahara Y (2016) CAPS1 RNA editing promotes dense core vesicle exocytosis. Cell Rep 17(8):2004–2014. https://doi.org/10.1016/j.celrep.2016.10.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, Levanon EY (2014) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24(3):365–376. https://doi.org/10.1101/gr.164749.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y, Zhang W, Liang Y, Hu X, Tan X, Guo J, Dong Z, Liang Y, Bao L, Wang J (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30(3):253–260. https://doi.org/10.1038/nbt.2122

    Article  CAS  PubMed  Google Scholar 

  69. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22(8):1001–1005. https://doi.org/10.1038/nbt996

    Article  CAS  PubMed  Google Scholar 

  70. Picardi E, Manzari C, Mastropasqua F, Aiello I, D'Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941. https://doi.org/10.1038/srep14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'Connell MA, Li JB (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10(2):128–132. https://doi.org/10.1038/nmeth.2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9(6):579–581. https://doi.org/10.1038/nmeth.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neeman Y, Levanon EY, Jantsch MF, Eisenberg E (2006) RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12(10):1802–1809. https://doi.org/10.1261/rna.165106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, Larizza L (2000) RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 9(15):2297–2304. https://doi.org/10.1093/oxfordjournals.hmg.a018921

    Article  CAS  PubMed  Google Scholar 

  75. Flomen R, Knight J, Sham P, Kerwin R, Makoff A (2004) Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 32(7):2113–2122. https://doi.org/10.1093/nar/gkh536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M (2006) RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 7(3):303–307. https://doi.org/10.1038/sj.embor.7400621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8(2):R29. https://doi.org/10.1186/gb-2007-8-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399(6731):75–80. https://doi.org/10.1038/19992

    Article  CAS  PubMed  Google Scholar 

  79. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, Wang S (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 122(11):4059–4076. https://doi.org/10.1172/JCI62925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140. https://doi.org/10.1126/science.1138050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME, Salameh A, Lee HJ, Kim SJ, Ivan C, Velazquez-Torres G, Nip KM, Zhu K, Brooks D, Jones SJ, Birol I, Mosqueda M, Wen YY, Eterovic AK, Sood AK, Hwu P, Gershenwald JE, Robertson AG, Calin GA, Markel G, Fidler IJ, Bar-Eli M (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17(3):311–321. https://doi.org/10.1038/ncb3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borchert GM, Gilmore BL, Spengler RM, Xing Y, Lanier W, Bhattacharya D, Davidson BL (2009) Adenosine deamination in human transcripts generates novel microRNA binding sites. Hum Mol Genet 18(24):4801–4807. https://doi.org/10.1093/hmg/ddp443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, Jae N, Rossbach O, Amrhein C, Sigala F, Boon RA, Furtig B, Manavski Y, You X, Uchida S, Keller T, Boeckel JN, Franco-Cereceda A, Maegdefessel L, Chen W, Schwalbe H, Bindereif A, Eriksson P, Hedin U, Zeiher AM, Dimmeler S (2016) Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med 22(10):1140–1150. https://doi.org/10.1038/nm.4172

    Article  CAS  PubMed  Google Scholar 

  84. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177. https://doi.org/10.1016/j.celrep.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  85. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  86. Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou S, Lin H, Liang X, Cai X (2017) Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis 8(11):e3171. https://doi.org/10.1038/cddis.2017.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eggington JM, Greene T, Bass BL (2011) Predicting sites of ADAR editing in double-stranded RNA. Nat Commun 2:319. https://doi.org/10.1038/ncomms1324

    Article  CAS  PubMed  Google Scholar 

  88. Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279(6):4894–4902. https://doi.org/10.1074/jbc.M311347200

    Article  CAS  PubMed  Google Scholar 

  89. Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10(1):109–115. https://doi.org/10.1038/ni.1680

    Article  CAS  PubMed  Google Scholar 

  90. Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279(6):4952–4961. https://doi.org/10.1074/jbc.M310162200

    Article  CAS  PubMed  Google Scholar 

  91. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349(6252):1115–1120. https://doi.org/10.1126/science.aac7049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellaker C, Vesely C, Ponting CP, McLaughlin PJ, Jantsch MF, Dorin J, Adams IR, Scadden AD, Ohman M, Keegan LP, O'Connell MA (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9(4):1482–1494. https://doi.org/10.1016/j.celrep.2014.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43(5):933–944. https://doi.org/10.1016/j.immuni.2015.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ward SV, George CX, Welch MJ, Liou LY, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci USA 108(1):331–336. https://doi.org/10.1073/pnas.1017241108

    Article  PubMed  Google Scholar 

  95. George CX, Ramaswami G, Li JB, Samuel CE (2016) Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem 291(12):6158–6168. https://doi.org/10.1074/jbc.M115.709014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Solomon O, Di Segni A, Cesarkas K, Porath HT, Marcu-Malina V, Mizrahi O, Stern-Ginossar N, Kol N, Farage-Barhom S, Glick-Saar E, Lerenthal Y, Levanon EY, Amariglio N, Unger R, Goldstein I, Eyal E, Rechavi G (2017) RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 8(1):1440. https://doi.org/10.1038/s41467-017-01458-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. https://doi.org/10.1126/science.1132505

    Article  PubMed  Google Scholar 

  98. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314(5801):997–1001. https://doi.org/10.1126/science.1132998

    Article  CAS  PubMed  Google Scholar 

  99. Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 514(7522):372–375. https://doi.org/10.1038/nature13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105. https://doi.org/10.1038/nature04734

    Article  CAS  PubMed  Google Scholar 

  101. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  102. Rice GI, Del Toro DY, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, Bader-Meunier B, Baildam EM, Battini R, Beresford MW, Casarano M, Chouchane M, Cimaz R, Collins AE, Cordeiro NJ, Dale RC, Davidson JE, De Waele L, Desguerre I, Faivre L, Fazzi E, Isidor B, Lagae L, Latchman AR, Lebon P, Li C, Livingston JH, Lourenco CM, Mancardi MM, Masurel-Paulet A, McInnes IB, Menezes MP, Mignot C, O'Sullivan J, Orcesi S, Picco PP, Riva E, Robinson RA, Rodriguez D, Salvatici E, Scott C, Szybowska M, Tolmie JL, Vanderver A, Vanhulle C, Vieira JP, Webb K, Whitney RN, Williams SG, Wolfe LA, Zuberi SM, Hur S, Crow YJ (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509. https://doi.org/10.1038/ng.2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A, Nishikomori R, Funatsuka M, Ohshima Y, Sugawara Y, Yasumi T, Kato H, Shirai T, Ohara O, Fujita T, Heike T (2014) Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 95(1):121–125. https://doi.org/10.1016/j.ajhg.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Van Eyck L, De Somer L, Pombal D, Bornschein S, Frans G, Humblet-Baron S, Moens L, de Zegher F, Bossuyt X, Wouters C, Liston A (2015) Brief report: IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency. Arthritis Rheumatol 67(6):1592–1597. https://doi.org/10.1002/art.39110

    Article  CAS  PubMed  Google Scholar 

  105. Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H, Inoue M, Minowa O, Yoshida A, Deguchi K, Sato H, Ito S, Shiroishi T, Takeyasu K, Noda T, Fujita T (2014) Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40(2):199–212. https://doi.org/10.1016/j.immuni.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  106. Vitali P, Scadden AD (2010) Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17(9):1043–1050. https://doi.org/10.1038/nsmb.1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Riedmann EM, Schopoff S, Hartner JC, Jantsch MF (2008) Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14(6):1110–1118. https://doi.org/10.1261/rna.923308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR (2006) Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80(9):4501–4509. https://doi.org/10.1128/JVI.80.9.4501-4509.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568. https://doi.org/10.1038/nri2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li Y, Banerjee S, Goldstein SA, Dong B, Gaughan C, Rath S, Donovan J, Korennykh A, Silverman RH, Weiss SR (2017) Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. Elife. https://doi.org/10.7554/eLife.25687

    Article  PubMed  PubMed Central  Google Scholar 

  111. Andersen JB, Mazan-Mamczarz K, Zhan M, Gorospe M, Hassel BA (2009) Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence. RNA Biol 6(3):305–315. https://doi.org/10.4161/rna.6.3.8526

    Article  CAS  PubMed  Google Scholar 

  112. Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 31(1):49–57. https://doi.org/10.1089/jir.2010.0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brennan-Laun SE, Ezelle HJ, Li XL, Hassel BA (2014) RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res 34(4):275–288. https://doi.org/10.1089/jir.2013.0147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman RH (1997) Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J 16(21):6355–6363. https://doi.org/10.1093/emboj/16.21.6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Donovan J, Rath S, Kolet-Mandrikov D, Korennykh A (2017) Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 23(11):1660–1671. https://doi.org/10.1261/rna.062000.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baal N, Cunningham S, Obermann HL, Thomas J, Lippitsch A, Dietert K, Gruber AD, Kaufmann A, Michel G, Nist A, Stiewe T, Rupp O, Goesmann A, Zukunft S, Fleming I, Bein G, Lohmeyer J, Bauer S, Hackstein H (2019) ADAR1 is required for dendritic cell subset homeostasis and alveolar macrophage function. J Immunol 202(4):1099–1111. https://doi.org/10.4049/jimmunol.1800269

    Article  CAS  PubMed  Google Scholar 

  117. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10(5):488–495. https://doi.org/10.1038/ni.1724

    Article  CAS  PubMed  Google Scholar 

  118. Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A, Agudo J, Brown BD, Schmolke M, Miller JC, Leboeuf M, Murphy KM, Garcia-Sastre A, Merad M (2012) Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J Clin Invest 122(11):4037–4047. https://doi.org/10.1172/JCI60659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ben-Dov I, Segel MJ (2014) Autoimmune pulmonary alveolar proteinosis: clinical course and diagnostic criteria. Autoimmun Rev 13(4–5):513–517. https://doi.org/10.1016/j.autrev.2014.01.046

    Article  CAS  PubMed  Google Scholar 

  120. Pujantell M, Riveira-Munoz E, Badia R, Castellvi M, Garcia-Vidal E, Sirera G, Puig T, Ramirez C, Clotet B, Este JA, Ballana E (2017) RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci Rep 7(1):13339. https://doi.org/10.1038/s41598-017-13580-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, Jenkinson EM, Bacino CA, Battini R, Bertini E, Brogan PA, Brueton LA, Carpanelli M, De Laet C, de Lonlay P, del Toro M, Desguerre I, Fazzi E, Garcia-Cazorla A, Heiberg A, Kawaguchi M, Kumar R, Lin JP, Lourenco CM, Male AM, Marques W Jr, Mignot C, Olivieri I, Orcesi S, Prabhakar P, Rasmussen M, Robinson RA, Rozenberg F, Schmidt JL, Steindl K, Tan TY, van der Merwe WG, Vanderver A, Vassallo G, Wakeling EL, Wassmer E, Whittaker E, Livingston JH, Lebon P, Suzuki T, McLaughlin PJ, Keegan LP, O'Connell MA, Lovell SC, Crow YJ (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44(11):1243–1248. https://doi.org/10.1038/ng.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chung H, Rice CM (2018) T time for ADAR: ADAR1 is required for T cell self-tolerance. EMBO Rep. https://doi.org/10.15252/embr.201847237

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606. https://doi.org/10.1146/annurev.immunol.23.021704.115601

    Article  CAS  PubMed  Google Scholar 

  124. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, Abdel-Hamid MS, Abdel-Salam GM, Ackroyd S, Aeby A, Agosta G, Albin C, Allon-Shalev S, Arellano M, Ariaudo G, Aswani V, Babul-Hirji R, Baildam EM, Bahi-Buisson N, Bailey KM, Barnerias C, Barth M, Battini R, Beresford MW, Bernard G, Bianchi M, Billette de Villemeur T, Blair EM, Bloom M, Burlina AB, Carpanelli ML, Carvalho DR, Castro-Gago M, Cavallini A, Cereda C, Chandler KE, Chitayat DA, Collins AE, Sierra Corcoles C, Cordeiro NJ, Crichiutti G, Dabydeen L, Dale RC, D'Arrigo S, De Goede CG, De Laet C, De Waele LM, Denzler I, Desguerre I, Devriendt K, Di Rocco M, Fahey MC, Fazzi E, Ferrie CD, Figueiredo A, Gener B, Goizet C, Gowrinathan NR, Gowrishankar K, Hanrahan D, Isidor B, Kara B, Khan N, King MD, Kirk EP, Kumar R, Lagae L, Landrieu P, Lauffer H, Laugel V, La Piana R, Lim MJ, Lin JP, Linnankivi T, Mackay MT, Marom DR, Marques Lourenco C, McKee SA, Moroni I, Morton JE, Moutard ML, Murray K, Nabbout R, Nampoothiri S, Nunez-Enamorado N, Oades PJ, Olivieri I, Ostergaard JR, Perez-Duenas B, Prendiville JS, Ramesh V, Rasmussen M, Regal L, Ricci F, Rio M, Rodriguez D, Roubertie A, Salvatici E, Segers KA, Sinha GP, Soler D, Spiegel R, Stodberg TI, Straussberg R, Swoboda KJ, Suri M, Tacke U, Tan TY, te Water Naude J, Wee Teik K, Thomas MM, Till M, Tonduti D, Valente EM, Van Coster RN, van der Knaap MS, Vassallo G, Vijzelaar R, Vogt J, Wallace GB, Wassmer E, Webb HJ, Whitehouse WP, Whitney RN, Zaki MS, Zuberi SM, Livingston JH, Rozenberg F, Lebon P, Vanderver A, Orcesi S, Rice GI (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A(2):296–312. https://doi.org/10.1002/ajmg.a.36887

    Article  CAS  PubMed  Google Scholar 

  125. Cuadrado E, Booiman T, van Hamme JL, Jansen MH, van Dort KA, Vanderver A, Rice GI, Crow YJ, Kootstra NA, Kuijpers TW (2015) ADAR1 facilitates HIV-1 replication in primary CD4+ T cells. PLoS ONE 10(12):e0143613. https://doi.org/10.1371/journal.pone.0143613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marcu-Malina V, Goldberg S, Vax E, Amariglio N, Goldstein I, Rechavi G (2016) ADAR1 is vital for B cell lineage development in the mouse bone marrow. Oncotarget 7(34):54370–54379. https://doi.org/10.18632/oncotarget.11029

    Article  PubMed  PubMed Central  Google Scholar 

  127. Heraud-Farlow JE, Chalk AM, Linder SE, Li Q, Taylor S, White JM, Pang L, Liddicoat BJ, Gupte A, Li JB, Walkley CR (2017) Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol 18(1):166. https://doi.org/10.1186/s13059-017-1301-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Danan-Gotthold M, Guyon C, Giraud M, Levanon EY, Abramson J (2016) Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol 17(1):219. https://doi.org/10.1186/s13059-016-1079-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Paul MS, Bass BL (1998) Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J 17(4):1120–1127. https://doi.org/10.1093/emboj/17.4.1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, Levanon EY (2018) Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 23(1):50–57. https://doi.org/10.1016/j.celrep.2018.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, Corry PC, Cowan FM, Frints SG, Klepper J, Livingston JH, Lynch SA, Massey RF, Meritet JF, Michaud JL, Ponsot G, Voit T, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T (2006) Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 38(8):917–920. https://doi.org/10.1038/ng1845

    Article  CAS  PubMed  Google Scholar 

  132. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Aicardi J, Babul-Hirji R, Baumann C, Baxter P, Bertini E, Chandler KE, Chitayat D, Cau D, Dery C, Fazzi E, Goizet C, King MD, Klepper J, Lacombe D, Lanzi G, Lyall H, Martinez-Frias ML, Mathieu M, McKeown C, Monier A, Oade Y, Quarrell OW, Rittey CD, Rogers RC, Sanchis A, Stephenson JB, Tacke U, Till M, Tolmie JL, Tomlin P, Voit T, Weschke B, Woods CG, Lebon P, Bonthron DT, Ponting CP, Jackson AP (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38(8):910–916. https://doi.org/10.1038/ng1842

    Article  CAS  PubMed  Google Scholar 

  133. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832. https://doi.org/10.1038/ng.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15(7):429–440. https://doi.org/10.1038/nri3850

    Article  CAS  PubMed  Google Scholar 

  135. Crow YJ, Rehwinkel J (2009) Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 18(R2):R130–136. https://doi.org/10.1093/hmg/ddp293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schade M, Turner CJ, Lowenhaupt K, Rich A, Herbert A (1999) Structure-function analysis of the Z-DNA-binding domain Zalpha of dsRNA adenosine deaminase type I reveals similarity to the (alpha + beta) family of helix-turn-helix proteins. EMBO J 18(2):470–479. https://doi.org/10.1093/emboj/18.2.470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koeris M, Funke L, Shrestha J, Rich A, Maas S (2005) Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res 33(16):5362–5370. https://doi.org/10.1093/nar/gki849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, Tomita Y (2003) Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 73(3):693–699. https://doi.org/10.1086/378209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Suzuki N, Suzuki T, Inagaki K, Ito S, Kono M, Fukai K, Takama H, Sato K, Ishikawa O, Abe M, Shimizu H, Kawai M, Horikawa T, Yoshida K, Matsumoto K, Terui T, Tsujioka K, Tomita Y (2005) Mutation analysis of the ADAR1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J Invest Dermatol 124(6):1186–1192. https://doi.org/10.1111/j.0022-202X.2005.23732.x

    Article  CAS  PubMed  Google Scholar 

  140. Kondo T, Suzuki T, Ito S, Kono M, Negoro T, Tomita Y (2008) Dyschromatosis symmetrica hereditaria associated with neurological disorders. J Dermatol 35(10):662–666. https://doi.org/10.1111/j.1346-8138.2008.00540.x

    Article  PubMed  Google Scholar 

  141. Vlachogiannis NI, Gatsiou A, Silvestris DA, Stamatelopoulos K, Tektonidou MG, Gallo A, Sfikakis PP, Stellos K (2019) Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmunol. https://doi.org/10.1016/j.jaut.2019.102329

    Article  Google Scholar 

  142. Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4(4):357–366. https://doi.org/10.1016/s1074-7613(00)80249-6

    Article  CAS  PubMed  Google Scholar 

  143. Saegusa K, Ishimaru N, Yanagi K, Arakaki R, Ogawa K, Saito I, Katunuma N, Hayashi Y (2002) Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 110(3):361–369. https://doi.org/10.1172/JCI14682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SR, Rosloniec EF, Elliott EA, Rudensky AY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10(2):207–217

    Article  CAS  PubMed  Google Scholar 

  145. Laxminarayana D, Khan IU, Kammer G (2002) Transcript mutations of the alpha regulatory subunit of protein kinase A and up-regulation of the RNA-editing gene transcript in lupus T lymphocytes. Lancet 360(9336):842–849. https://doi.org/10.1016/s0140-6736(02)09966-x

    Article  CAS  PubMed  Google Scholar 

  146. Kammer GM (1999) High prevalence of T cell type I protein kinase A deficiency in systemic lupus erythematosus. Arthritis Rheum 42(7):1458–1465. https://doi.org/10.1002/1529-0131(199907)42:7%3c1458:AID-ANR20%3e3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  147. Laxminarayana D, O'Rourke KS, Maas S, Olorenshaw I (2007) Altered editing in RNA editing adenosine deaminase ADAR2 gene transcripts of systemic lupus erythematosus T lymphocytes. Immunology 121(3):359–369. https://doi.org/10.1111/j.1365-2567.2007.02582.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA, Eisenberg E, Levanon EY (2015) Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep 13(2):267–276. https://doi.org/10.1016/j.celrep.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  149. Han L, Diao L, Yu S, Xu X, Li J, Zhang R, Yang Y, Werner HMJ, Eterovic AK, Yuan Y, Li J, Nair N, Minelli R, Tsang YH, Cheung LWT, Jeong KJ, Roszik J, Ju Z, Woodman SE, Lu Y, Scott KL, Li JB, Mills GB, Liang H (2015) The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28(4):515–528. https://doi.org/10.1016/j.ccell.2015.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fumagalli D, Gacquer D, Rothe F, Lefort A, Libert F, Brown D, Kheddoumi N, Shlien A, Konopka T, Salgado R, Larsimont D, Polyak K, Willard-Gallo K, Desmedt C, Piccart M, Abramowicz M, Campbell PJ, Sotiriou C, Detours V (2015) Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep 13(2):277–289. https://doi.org/10.1016/j.celrep.2015.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283

    Article  CAS  PubMed  Google Scholar 

  152. Aizawa H, Sawada J, Hideyama T, Yamashita T, Katayama T, Hasebe N, Kimura T, Yahara O, Kwak S (2010) TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol 120(1):75–84. https://doi.org/10.1007/s00401-010-0678-x

    Article  CAS  PubMed  Google Scholar 

  153. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427(6977):801. https://doi.org/10.1038/427801a

    Article  CAS  PubMed  Google Scholar 

  154. Akbarian S, Smith MA, Jones EG (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia. Brain Res 699(2):297–304. https://doi.org/10.1016/0006-8993(95)00922-d

    Article  CAS  PubMed  Google Scholar 

  155. Gaisler-Salomon I, Kravitz E, Feiler Y, Safran M, Biegon A, Amariglio N, Rechavi G (2014) Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer's disease. Neurobiol Aging 35(8):1785–1791. https://doi.org/10.1016/j.neurobiolaging.2014.02.018

    Article  CAS  PubMed  Google Scholar 

  156. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98(25):14687–14692. https://doi.org/10.1073/pnas.251531398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978. https://doi.org/10.1038/nm746

    Article  CAS  PubMed  Google Scholar 

  158. Neudauer CL, Joberty G, Tatsis N, Macara IG (1998) Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr Biol 8(21):1151–1160. https://doi.org/10.1016/s0960-9822(07)00486-1

    Article  CAS  PubMed  Google Scholar 

  159. Qin YR, Qiao JJ, Chan TH, Zhu YH, Li FF, Liu H, Fei J, Li Y, Guan XY, Chen L (2014) Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res 74(3):840–851. https://doi.org/10.1158/0008-5472.CAN-13-2545

    Article  CAS  PubMed  Google Scholar 

  160. Shigeyasu K, Okugawa Y, Toden S, Miyoshi J, Toiyama Y, Nagasaka T, Takahashi N, Kusunoki M, Takayama T, Yamada Y, Fujiwara T, Chen L, Goel A (2018) AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight. https://doi.org/10.1172/jci.insight.99976

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chan TH, Lin CH, Qi L, Fei J, Li Y, Yong KJ, Liu M, Song Y, Chow RK, Ng VH, Yuan YF, Tenen DG, Guan XY, Chen L (2014) A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 63(5):832–843. https://doi.org/10.1136/gutjnl-2012-304037

    Article  CAS  PubMed  Google Scholar 

  162. Gumireddy K, Li A, Kossenkov AV, Sakurai M, Yan J, Li Y, Xu H, Wang J, Zhang PJ, Zhang L, Showe LC, Nishikura K, Huang Q (2016) The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat Commun 7:10715. https://doi.org/10.1038/ncomms10715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang M, Fritsche J, Roszik J, Williams LJ, Peng X, Chiu Y, Tsou CC, Hoffgaard F, Goldfinger V, Schoor O, Talukder A, Forget MA, Haymaker C, Bernatchez C, Han L, Tsang YH, Kong K, Xu X, Scott KL, Singh-Jasuja H, Lizee G, Liang H, Weinschenk T, Mills GB, Hwu P (2018) RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun 9(1):3919. https://doi.org/10.1038/s41467-018-06405-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pinto Y, Buchumenski I, Levanon EY, Eisenberg E (2018) Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 46(1):71–82. https://doi.org/10.1093/nar/gkx1176

    Article  CAS  PubMed  Google Scholar 

  165. Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8(8):763–769. https://doi.org/10.1038/sj.embor.7401011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito VA, Presutti C, Vincenti S, Eisenberg E, Locatelli F, Gallo A (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5. https://doi.org/10.1186/s13059-014-0575-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3):430–446. https://doi.org/10.1016/j.ccr.2011.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Navada SC, Steinmann J, Lubbert M, Silverman LR (2014) Clinical development of demethylating agents in hematology. J Clin Invest 124(1):40–46. https://doi.org/10.1172/JCI69739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, Yang X, Liang G, Jones PA (2012) DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 21(5):655–667. https://doi.org/10.1016/j.ccr.2012.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH, Yang AS, Aucott T, Dauses T, Odchimar-Reissig R, Licht J, McConnell MJ, Nasrallah C, Kim MK, Zhang W, Sun Y, Murgo A, Espinoza-Delgado I, Oteiza K, Owoeye I, Silverman LR, Gore SD, Carraway HE (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114(13):2764–2773. https://doi.org/10.1182/blood-2009-02-203547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Banerjee S, Gusho E, Gaughan C, Dong B, Gu X, Holvey-Bates E, Talukdar M, Li Y, Weiss SR, Sicheri F, Saunthararajah Y, Stark GR, Silverman RH (2019) OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proc Natl Acad Sci USA 116(11):5071–5076. https://doi.org/10.1073/pnas.1815071116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu H, Golji J, Brodeur LK, Chung FS, Chen JT, deBeaumont RS, Bullock CP, Jones MD, Kerr G, Li L, Rakiec DP, Schlabach MR, Sovath S, Growney JD, Pagliarini RA, Ruddy DA, MacIsaac KD, Korn JM, McDonald ER 3rd (2019) Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat Med 25(1):95–102. https://doi.org/10.1038/s41591-018-0302-5

    Article  CAS  PubMed  Google Scholar 

  173. Gannon HS, Zou T, Kiessling MK, Gao GF, Cai D, Choi PS, Ivan AP, Buchumenski I, Berger AC, Goldstein JT, Cherniack AD, Vazquez F, Tsherniak A, Levanon EY, Hahn WC, Meyerson M (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Commun 9(1):5450. https://doi.org/10.1038/s41467-018-07824-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, Miller BC, Du PP, Yates KB, Dubrot J, Buchumenski I, Comstock DE, Brown FD, Ayer A, Kohnle IC, Pope HW, Zimmer MD, Sen DR, Lane-Reticker SK, Robitschek EJ, Griffin GK, Collins NB, Long AH, Doench JG, Kozono D, Levanon EY, Haining WN (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737):43–48. https://doi.org/10.1038/s41586-018-0768-9

    Article  CAS  PubMed  Google Scholar 

  175. Deniz O, Frost JM, Branco MR (2019) Regulation of transposable elements by DNA modifications. Nat Rev Genet 20(7):417–431. https://doi.org/10.1038/s41576-019-0106-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid (KAKENHI; 19K22580 and 19H04210 to Y. K., and 18K15186 and 15K19126 to T. N.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, by grants from the Takeda Science Foundation (to Y. K. and T. N.), the Osaka Nanbyou Zaidan, The Naito Foundation, the Astellas Foundation for Research on Metabolic Disorders and The Mochida Memorial Foundation for Medical and Pharmaceutical Research (to T. N.), and by a Novartis Research Grant (to T. N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Kawahara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakahama, T., Kawahara, Y. Adenosine-to-inosine RNA editing in the immune system: friend or foe?. Cell. Mol. Life Sci. 77, 2931–2948 (2020). https://doi.org/10.1007/s00018-020-03466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03466-2

Keywords

Navigation