Skip to main content

Advertisement

Log in

Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin’s interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080. https://doi.org/10.1038/nrdp.2016.80

    Article  PubMed  Google Scholar 

  2. Molnar MJ, Kovacs GG (2017) Mitochondrial diseases. Handb Clin Neurol 145:147–155. https://doi.org/10.1016/B978-0-12-802395-2.00010-9

    Article  PubMed  Google Scholar 

  3. Koyano F, Yamano K, Kosako H, Tanaka K, Matsuda N (2019) Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. J Biol Chem 294(26):10300–10314. https://doi.org/10.1074/jbc.RA118.006302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ (2019) The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 1443(1):75–96. https://doi.org/10.1111/nyas.14005

    Article  PubMed  Google Scholar 

  5. Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24(10):1150–1163. https://doi.org/10.1089/scd.2014.0484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485. https://doi.org/10.1016/j.redox.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Purohit V, Simeone DM, Lyssiotis CA (2019) Metabolic regulation of redox balance in cancer. Cancers (Basel) 11:7. https://doi.org/10.3390/cancers11070955

    Article  CAS  Google Scholar 

  8. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13(6):472–482. https://doi.org/10.1016/j.ccr.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  9. Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P, Maenhaut C (2017) Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene 36(19):2637–2642. https://doi.org/10.1038/onc.2016.411

    Article  CAS  PubMed  Google Scholar 

  10. Thomson TM, Balcells C, Cascante M (2019) Metabolic plasticity and epithelial-mesenchymal transition. J Clin Med 8:7. https://doi.org/10.3390/jcm8070967

    Article  CAS  Google Scholar 

  11. Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT (2015) Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat 38(3):117–122. https://doi.org/10.1159/000375435

    Article  CAS  PubMed  Google Scholar 

  12. Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842. https://doi.org/10.1016/j.redox.2017.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spencer NY, Stanton RC (2019) The Warburg effect, lactate, and nearly a century of trying to cure cancer. Semin Nephrol 39(4):380–393. https://doi.org/10.1016/j.semnephrol.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Liu M, Li L, Chen L (2018) Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol 233(4):2839–2849. https://doi.org/10.1002/jcp.25998

    Article  CAS  PubMed  Google Scholar 

  15. Acuna Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11(2):221–240. https://doi.org/10.2174/156802611794863517

    Article  PubMed  Google Scholar 

  16. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 54(2):127–138. https://doi.org/10.1111/jpi.12026

    Article  CAS  PubMed  Google Scholar 

  17. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci 74(21):3863–3881. https://doi.org/10.1007/s00018-017-2609-7

    Article  CAS  PubMed  Google Scholar 

  18. Tan D-X, Reiter RJ (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res 2(1):44–66. https://doi.org/10.32794/mr11250011

    Article  Google Scholar 

  19. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC, Reiter RJ, Acuna-Castroviejo D (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52(2):217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x

    Article  CAS  PubMed  Google Scholar 

  20. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (Lausanne) 10:249. https://doi.org/10.3389/fendo.2019.00249

    Article  Google Scholar 

  21. Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, Feng Y, Liu W, Yu F (2017) A review of sleep disorders and melatonin. Neurol Res 39(6):559–565. https://doi.org/10.1080/01616412.2017.1315864

    Article  CAS  PubMed  Google Scholar 

  22. Reiter R, Tan D-X, Sharma R (2018) Historical perspective and evaluation of the mechanisms by which melatonin mediates seasonal reproduction in mammals. Melatonin Res 1(1):59–77. https://doi.org/10.32794/mr11250004

    Article  Google Scholar 

  23. Reiter RJ, Rosales-Corral S, Zhou X, Tan DX (2017) Role of SIRT3/SOD2 signaling in mediating the antioxidant actions of melatonin in mitochondria. Curr Trends Endocrinol 9:45–49

    Google Scholar 

  24. Blask DE, Sauer LA, Dauchy R, Holowachuk EW, Ruhoff MS (1999) New actions of melatonin on tumor metabolism and growth. Biol Signals Recept 8(1–2):49–55. https://doi.org/10.1159/000014568

    Article  CAS  PubMed  Google Scholar 

  25. Leon-Blanco MM, Guerrero JM, Reiter RJ, Pozo D (2004) RNA expression of human telomerase subunits TR and TERT is differentially affected by melatonin receptor agonists in the MCF-7 tumor cell line. Cancer Lett 216(1):73–80. https://doi.org/10.1016/j.canlet.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  26. Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ (2009) Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 115(1):13–27. https://doi.org/10.1007/s10549-008-0103-5

    Article  CAS  PubMed  Google Scholar 

  27. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci 18:4. https://doi.org/10.3390/ijms18040843

    Article  CAS  Google Scholar 

  28. Gil-Martin E, Egea J, Reiter RJ, Romero A (2019) The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 39(6):2239–2285. https://doi.org/10.1002/med.21582

    Article  PubMed  Google Scholar 

  29. Blask DE, Dauchy RT, Dauchy EM, Mao L, Hill SM, Greene MW, Belancio VP, Sauer LA, Davidson L (2014) Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS ONE 9(8):e102776. https://doi.org/10.1371/journal.pone.0102776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hevia D, Gonzalez-Menendez P, Fernandez-Fernandez M, Cueto S, Rodriguez-Gonzalez P, Garcia-Alonso JI, Mayo JC, Sainz RM (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a (13)C stable isotope-resolved metabolomic study. Int J Mol Sci 18:8. https://doi.org/10.3390/ijms18081620

    Article  CAS  Google Scholar 

  31. Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16):2195–2204. https://doi.org/10.2174/0929867043364711

    Article  CAS  PubMed  Google Scholar 

  32. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353. https://doi.org/10.1016/s0360-3016(01)01630-3

    Article  CAS  PubMed  Google Scholar 

  33. Reiter RJ, Sharma R, Ma Q, Rosales-Corral S, Acuna-Castroviejo D, Escames G (2019) Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res 2(3):105–119. https://doi.org/10.32794/mr11250033

    Article  Google Scholar 

  34. James MO, Jahn SC, Zhong G, Smeltz MG, Hu Z, Stacpoole PW (2017) Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol Ther 170:166–180. https://doi.org/10.1016/j.pharmthera.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  35. Leon J, Acuna-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 75(7):765–790. https://doi.org/10.1016/j.lfs.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  36. Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST (2004) Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 37(1):55–70. https://doi.org/10.1111/j.1600-079X.2004.00140.x

    Article  CAS  PubMed  Google Scholar 

  37. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 19:8. https://doi.org/10.3390/ijms19082439

    Article  CAS  Google Scholar 

  38. Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14(12):1677–1679. https://doi.org/10.1096/fj.99-0865fje

    Article  CAS  PubMed  Google Scholar 

  39. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, Wu HY, Chen CC, Hsu LF (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 43(4):389–403. https://doi.org/10.1111/j.1600-079X.2007.00490.x

    Article  CAS  PubMed  Google Scholar 

  40. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110(3):472–480. https://doi.org/10.1093/bja/aes577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Acuña-Castroviejo D, Noguiera-Navarro M, Reiter R, Escames G (2018) Melatonin actions in the heart; more than a hormone. Melatonin Res 1:21–26. https://doi.org/10.32794/mr11250002

    Article  Google Scholar 

  42. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res 62:4. https://doi.org/10.1111/jpi.12390

    Article  CAS  Google Scholar 

  43. Kerenyi NA, Balogh I, Somogyi E, Sotonyi P (1979) Cytochemical investigation of acetyl-serotonin-transferase activity in the pineal gland. Cell Mol Biol Incl Cyto Enzymol 25(4):259–262

    CAS  PubMed  Google Scholar 

  44. He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, Ji P, Liu G (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte's quality under in vitro conditions. Int J Mol Sci 17:6. https://doi.org/10.3390/ijms17060939

    Article  CAS  Google Scholar 

  45. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114(38):E7997–E8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  Google Scholar 

  46. Hickman AB, Klein DC, Dyda F (1999) Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell 3(1):23–32. https://doi.org/10.1016/s1097-2765(00)80171-9

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML (2016) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361–383. https://doi.org/10.1146/annurev-pharmtox-010814-124742

    Article  CAS  PubMed  Google Scholar 

  48. Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47(2):109–126. https://doi.org/10.1111/j.1600-079X.2009.00701.x

    Article  CAS  PubMed  Google Scholar 

  49. Mao L, Dauchy RT, Blask DE, Dauchy EM, Slakey LM, Brimer S, Yuan L, Xiang S, Hauch A, Smith K, Frasch T, Belancio VP, Wren MA, Hill SM (2016) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J Pineal Res 60(2):167–177. https://doi.org/10.1111/jpi.12298

    Article  CAS  PubMed  Google Scholar 

  50. Ran C, Liu H, Hitoshi Y, Israel MA (2013) Proliferation-independent control of tumor glycolysis by PDGFR-mediated AKT activation. Cancer Res 73(6):1831–1843. https://doi.org/10.1158/0008-5472.CAN-12-2460

    Article  CAS  PubMed  Google Scholar 

  51. Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP (2016) Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 173(18):2702–2725. https://doi.org/10.1111/bph.13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8(24):39896–39921. https://doi.org/10.18632/oncotarget.16379

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Sirianni A, Pei Z, Cormier K, Smith K, Jiang J, Zhou S, Wang H, Zhao R, Yano H, Kim JE, Li W, Kristal BS, Ferrante RJ, Friedlander RM (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31(41):14496–14507. https://doi.org/10.1523/JNEUROSCI.3059-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48(2):135–141. https://doi.org/10.5152/eurasianjmed.2015.0267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boutin JA (2016) Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 20(3):303–317. https://doi.org/10.1517/14728222.2016.1091882

    Article  CAS  PubMed  Google Scholar 

  56. Klein DC (2007) Arylalkylamine N-acetyltransferase: "the Timezyme". J Biol Chem 282(7):4233–4237. https://doi.org/10.1074/jbc.R600036200

    Article  CAS  PubMed  Google Scholar 

  57. Hiromasa Y, Hu L, Roche TE (2006) Ligand-induced effects on pyruvate dehydrogenase kinase isoform 2. J Biol Chem 281(18):12568–12579. https://doi.org/10.1074/jbc.M513514200

    Article  CAS  PubMed  Google Scholar 

  58. Saunier E, Benelli C, Bortoli S (2016) The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 138(4):809–817. https://doi.org/10.1002/ijc.29564

    Article  CAS  PubMed  Google Scholar 

  59. Whitehouse S, Cooper RH, Randle PJ (1974) Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 141(3):761–774. https://doi.org/10.1042/bj1410761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kankotia S, Stacpoole PW (2014) Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta (1846) 2:617–629. https://doi.org/10.1016/j.bbcan.2014.08.005

    Article  CAS  Google Scholar 

  61. Chu QS, Sangha R, Spratlin J, Vos LJ, Mackey JR, McEwan AJ, Venner P, Michelakis ED (2015) A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest New Drugs 33(3):603–610. https://doi.org/10.1007/s10637-015-0221-y

    Article  CAS  PubMed  Google Scholar 

  62. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329(Pt 1):191–196. https://doi.org/10.1042/bj3290191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stacpoole PW (2017) Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst 109:11. https://doi.org/10.1093/jnci/djx071

    Article  CAS  Google Scholar 

  64. Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38(11):1124–1144. https://doi.org/10.1016/0026-0495(89)90051-6

    Article  CAS  PubMed  Google Scholar 

  65. Stacpoole PW (2011) The dichloroacetate dilemma: environmental hazard versus therapeutic goldmine—both or neither? Environ Health Perspect 119(2):155–158. https://doi.org/10.1289/ehp.1002554

    Article  CAS  PubMed  Google Scholar 

  66. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99(7):989–994. https://doi.org/10.1038/sj.bjc.6604554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De Preter G, Neveu MA, Danhier P, Brisson L, Payen VL, Porporato PE, Jordan BF, Sonveaux P, Gallez B (2016) Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 7 (3):2910–2920. https://doi.org/10.18632/oncotarget.6272

  68. Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120(1):253–260. https://doi.org/10.1007/s10549-009-0435-9

    Article  CAS  PubMed  Google Scholar 

  69. Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG (2010) Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer 102(12):1746–1752. https://doi.org/10.1038/sj.bjc.6605701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jia HY, Wang HN, Xia FY, Sun Y, Liu HL, Yan LL, Li SS, Jiang DC, Xu MM (2017) Dichloroacetate induces protective autophagy in esophageal squamous carcinoma cells. Oncol Lett 14(3):2765–2770. https://doi.org/10.3892/ol.2017.6562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D (2015) Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 20(5):635–643. https://doi.org/10.1016/j.drudis.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532. https://doi.org/10.1038/cddis.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olszewski U, Poulsen TT, Ulsperger E, Poulsen HS, Geissler K, Hamilton G (2010) In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds. Clin Pharmacol 2:177–183. https://doi.org/10.2147/CPAA.S11795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH, Cheng AL (2013) Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer 108(1):72–81. https://doi.org/10.1038/bjc.2012.559

    Article  CAS  PubMed  Google Scholar 

  75. Xie J, Wang BS, Yu DH, Lu Q, Ma J, Qi H, Fang C, Chen HZ (2011) Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol 38(2):409–417. https://doi.org/10.3892/ijo.2010.851

    Article  CAS  PubMed  Google Scholar 

  76. Dai Y, Xiong X, Huang G, Liu J, Sheng S, Wang H, Qin W (2014) Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels. PLoS ONE 9(4):e92962. https://doi.org/10.1371/journal.pone.0092962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xie Q, Zhang HF, Guo YZ, Wang PY, Liu ZS, Gao HD, Xie WL (2015) Combination of Taxol(R) and dichloroacetate results in synergistically inhibitory effects on Taxol-resistant oral cancer cells under hypoxia. Mol Med Rep 11(4):2935–2940. https://doi.org/10.3892/mmr.2014.3080

    Article  CAS  PubMed  Google Scholar 

  78. Guaragnella N, Giannattasio S, Moro L (2014) Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 92(1):62–72. https://doi.org/10.1016/j.bcp.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  79. Shroads AL, Guo X, Dixit V, Liu HP, James MO, Stacpoole PW (2008) Age-dependent kinetics and metabolism of dichloroacetate: possible relevance to toxicity. J Pharmacol Exp Ther 324(3):1163–1171. https://doi.org/10.1124/jpet.107.134593

    Article  CAS  PubMed  Google Scholar 

  80. Stacpoole PW, Martyniuk CJ, James MO, Calcutt NA (2019) Dichloroacetate-induced peripheral neuropathy. Int Rev Neurobiol 145:211–238. https://doi.org/10.1016/bs.irn.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  81. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 21(6):819–831. https://doi.org/10.1517/13543784.2012.681045

    Article  CAS  PubMed  Google Scholar 

  82. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22(3):R183–204. https://doi.org/10.1530/ERC-15-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA (2019) Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 76(5):837–863. https://doi.org/10.1007/s00018-018-2963-0

    Article  CAS  PubMed  Google Scholar 

  84. Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, Chen F, Reiter RJ, Yang Y (2018) Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol 175(16):3251–3262. https://doi.org/10.1111/bph.13966

    Article  CAS  PubMed  Google Scholar 

  85. Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 54(10):1299–1321. https://doi.org/10.1211/002235702760345374

    Article  CAS  PubMed  Google Scholar 

  86. Morishima I, Matsui H, Mukawa H, Hayashi K, Toki Y, Okumura K, Ito T, Hayakawa T (1998) Melatonin, a pineal hormone with antioxidant property, protects against adriamycin cardiomyopathy in rats. Life Sci 63(7):511–521. https://doi.org/10.1016/s0024-3205(98)00302-6

    Article  CAS  PubMed  Google Scholar 

  87. Wahab MH, Akoul ES, Abdel-Aziz AA (2000) Modulatory effects of melatonin and vitamin E on doxorubicin-induced cardiotoxicity in Ehrlich ascites carcinoma-bearing mice. Tumori 86(2):157–162

    Article  CAS  Google Scholar 

  88. Arslan SO, Zerin M, Vural H, Coskun A (2002) The effect of melatonin on bleomycin-induced pulmonary fibrosis in rats. J Pineal Res 32(1):21–25. https://doi.org/10.1034/j.1600-079x.2002.10796.x

    Article  CAS  PubMed  Google Scholar 

  89. Anwar MM, Mahfouz HA, Sayed AS (1998) Potential protective effects of melatonin on bone marrow of rats exposed to cytotoxic drugs. Comp Biochem Physiol A Mol Integr Physiol 119(2):493–501. https://doi.org/10.1016/s1095-6433(97)00456-x

    Article  CAS  PubMed  Google Scholar 

  90. Lopez-Gonzalez MA, Guerrero JM, Rojas F, Delgado F (2000) Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. J Pineal Res 28(2):73–80. https://doi.org/10.1034/j.1600-079x.2001.280202.x

    Article  CAS  PubMed  Google Scholar 

  91. Ma C, Li LX, Zhang Y, Xiang C, Ma T, Ma ZQ, Zhang ZP (2015) Protective and sensitive effects of melatonin combined with adriamycin on ER+ (estrogen receptor) breast cancer. Eur J Gynaecol Oncol 36(2):197–202

    CAS  PubMed  Google Scholar 

  92. Prieto-Dominguez N, Mendez-Blanco C, Carbajo-Pescador S, Fondevila F, Garcia-Palomo A, Gonzalez-Gallego J, Mauriz JL (2017) Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1alpha and hypoxia-mediated mitophagy. Oncotarget 8(53):91402–91414. https://doi.org/10.18632/oncotarget.20592

    Article  PubMed  PubMed Central  Google Scholar 

  93. Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M (2018) Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 196:143–155. https://doi.org/10.1016/j.lfs.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  94. Lee JH, Yoon YM, Han YS, Yun CW, Lee SH (2018) Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res 38(4):1993–2000. https://doi.org/10.21873/anticanres.12437

    Article  CAS  PubMed  Google Scholar 

  95. Wang Q, Sun Z, Du L, Xu C, Wang Y, Yang B, He N, Wang J, Ji K, Liu Y, Liu Q (2018) Melatonin sensitizes human colorectal cancer cells to gamma-ray ionizing radiation in vitro and in vivo. Int J Mol Sci 19:12. https://doi.org/10.3390/ijms19123974

    Article  Google Scholar 

  96. Sung GJ, Kim SH, Kwak S, Park SH, Song JH, Jung JH, Kim H, Choi KC (2019) Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 66(3):e12556. https://doi.org/10.1111/jpi.12556

    Article  CAS  PubMed  Google Scholar 

  97. Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49(3):248–255. https://doi.org/10.1111/j.1600-079X.2010.00789.x

    Article  CAS  PubMed  Google Scholar 

  98. Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H (2019) Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol 24:101225. https://doi.org/10.1016/j.redox.2019.101225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57(2):131–146. https://doi.org/10.1111/jpi.12162

    Article  CAS  PubMed  Google Scholar 

  100. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 55(4):325–356. https://doi.org/10.1111/jpi.12090

    Article  CAS  PubMed  Google Scholar 

  101. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  102. Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65(1):e12514. https://doi.org/10.1111/jpi.12514

    Article  CAS  PubMed  Google Scholar 

  103. Han L, Wang H, Li L, Li X, Ge J, Reiter RJ, Wang Q (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res 63:3. https://doi.org/10.1111/jpi.12431

    Article  CAS  Google Scholar 

  104. Proietti S, Cucina A, Minini M, Bizzarri M (2017) Melatonin, mitochondria, and the cancer cell. Cell Mol Life Sci 74(21):4015–4025. https://doi.org/10.1007/s00018-017-2612-z

    Article  CAS  PubMed  Google Scholar 

  105. Dauchy RT, Xiang S, Mao L, Brimer S, Wren MA, Yuan L, Anbalagan M, Hauch A, Frasch T, Rowan BG, Blask DE, Hill SM (2014) Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 74(15):4099–4110. https://doi.org/10.1158/0008-5472.CAN-13-3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xiang S, Dauchy RT, Hauch A, Mao L, Yuan L, Wren MA, Belancio VP, Mondal D, Frasch T, Blask DE, Hill SM (2015) Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J Pineal Res 59(1):60–69. https://doi.org/10.1111/jpi.12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol Life Sci 74(21):3883–3896. https://doi.org/10.1007/s00018-017-2615-9

    Article  CAS  PubMed  Google Scholar 

  108. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419. https://doi.org/10.1111/jpi.12267

    Article  CAS  PubMed  Google Scholar 

  109. Álvarez-Diduk R, Galano A, Tan DX, Reiter RJ (2016) The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds. Theoret Chem Acc 135(2):38. https://doi.org/10.1007/s00214-015-1785-5

    Article  CAS  Google Scholar 

  110. Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26(5):497–502. https://doi.org/10.1016/0197-0186(94)00154-m

    Article  CAS  PubMed  Google Scholar 

  111. Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24(2):83–89. https://doi.org/10.1111/j.1600-079x.1998.tb00371.x

    Article  CAS  PubMed  Google Scholar 

  112. Ortiz-Franco M, Planells E, Quintero B, Acuna-Castroviejo D, Rusanova I, Escames G, Molina-Lopez J (2017) Effect of melatonin supplementation on antioxidant status and DNA damage in high intensity trained athletes. Int J Sports Med 38(14):1117–1125. https://doi.org/10.1055/s-0043-119881

    Article  CAS  PubMed  Google Scholar 

  113. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210(4475):1267–1269. https://doi.org/10.1126/science.7434030

    Article  CAS  PubMed  Google Scholar 

  114. Brainard GC, Hanifin JP, Warfield B, Stone MK, James ME, Ayers M, Kubey A, Byrne B, Rollag M (2015) Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J Pineal Res 58(3):352–361. https://doi.org/10.1111/jpi.12221

    Article  CAS  PubMed  Google Scholar 

  115. Zimmerman S, Reiter RJ (2019) Melatonin and the optics of the human body. Melatonin Res 2(1):138–160. https://doi.org/10.32794/mr11250016

    Article  Google Scholar 

  116. Reiter RJ, Manchester LC, Tan DX (2010) Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 8(3):194–210. https://doi.org/10.2174/157015910792246236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M (2018) The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 70(3):291–306. https://doi.org/10.1111/jphp.12855

    Article  CAS  PubMed  Google Scholar 

  118. Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M (2018) The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 14(9):937–950. https://doi.org/10.1080/17425255.2018.1513492

    Article  CAS  PubMed  Google Scholar 

  119. Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389. https://doi.org/10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sanchez-Sanchez AM, Antolin I, Puente-Moncada N, Suarez S, Gomez-Lobo M, Rodriguez C, Martin V (2015) Melatonin cytotoxicity is associated to Warburg effect inhibition in ewing sarcoma cells. PLoS ONE 10(8):e0135420. https://doi.org/10.1371/journal.pone.0135420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim KJ, Choi JS, Kang I, Kim KW, Jeong CH, Jeong JW (2013) Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J Pineal Res 54(3):264–270. https://doi.org/10.1111/j.1600-079X.2012.01030.x

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Liu Q, Wang F, Ling EA, Liu S, Wang L, Yang Y, Yao L, Chen X, Wang F, Shi W, Gao M, Hao A (2013) Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition of HIF-1alpha. J Pineal Res 55(2):121–130. https://doi.org/10.1111/jpi.12052

    Article  CAS  PubMed  Google Scholar 

  123. Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC (2007) Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog 13(4):303–328. https://doi.org/10.1615/critrevoncog.v13.i4.30

    Article  PubMed  Google Scholar 

  124. Erren TC, Falaturi P, Morfeld P, Knauth P, Reiter RJ, Piekarski C (2010) Shift work and cancer: the evidence and the challenge. Dtsch Arztebl Int 107(38):657–662. https://doi.org/10.3238/arztebl.2010.0657

    Article  PubMed  PubMed Central  Google Scholar 

  125. Erren TC, Lewis P (2019) Hypothesis: ubiquitous circadian disruption can cause cancer. Eur J Epidemiol 34(1):1–4. https://doi.org/10.1007/s10654-018-0469-6

    Article  PubMed  Google Scholar 

  126. Bonde JP, Hansen J, Kolstad HA, Mikkelsen S, Olsen JH, Blask DE, Harma M, Kjuus H, de Koning HJ, Olsen J, Moller M, Schernhammer ES, Stevens RG, Akerstedt T (2012) Work at night and breast cancer–report on evidence-based options for preventive actions. Scand J Work Environ Health 38(4):380–390. https://doi.org/10.5271/sjweh.3282

    Article  PubMed  Google Scholar 

  127. Hull JT, Czeisler CA, Lockley SW (2018) Suppression of melatonin secretion in totally visually blind people by ocular exposure to white light: clinical characteristics. Ophthalmology 125(8):1160–1171. https://doi.org/10.1016/j.ophtha.2018.01.036

    Article  PubMed  Google Scholar 

  128. Stevens RG, Zhu Y (2015) Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc Lond B Biol Sci 370:1667. https://doi.org/10.1098/rstb.2014.0120

    Article  Google Scholar 

  129. Nagare R, Plitnick B, Figueiro MG (2019) Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults. Light Res Technol 51(4):530–543. https://doi.org/10.1177/1477153518763003

    Article  CAS  PubMed  Google Scholar 

  130. Podolin PL, Rollag MD, Brainard GC (1987) The suppression of nocturnal pineal melatonin in the Syrian hamster: dose–response curves at 500 and 360 nm. Endocrinology 121(1):266–270. https://doi.org/10.1210/endo-121-1-266

    Article  CAS  PubMed  Google Scholar 

  131. Chang WP, Lin CC (2017) Relationships of salivary cortisol and melatonin rhythms to sleep quality, emotion, and fatigue levels in patients with newly diagnosed lung cancer. Eur J Oncol Nurs 29:79–84. https://doi.org/10.1016/j.ejon.2017.05.008

    Article  PubMed  Google Scholar 

  132. de Castro TB, Bordin-Junior NA, de Almeida EA, de Campos Zuccari DAP (2018) Evaluation of melatonin and AFMK levels in women with breast cancer. Endocrine 62(1):242–249. https://doi.org/10.1007/s12020-018-1624-2

    Article  CAS  PubMed  Google Scholar 

  133. Li W, Kwok CC, Chan DC, Ho AW, Ho CS, Zhang J, Wing YK, Wang F, Tse LA (2019) Disruption of sleep, sleep-wake activity rhythm, and nocturnal melatonin production in breast cancer patients undergoing adjuvant chemotherapy: prospective cohort study. Sleep Med 55:14–21. https://doi.org/10.1016/j.sleep.2018.11.022

    Article  PubMed  Google Scholar 

  134. Veiga ECA, Simoes R, Valenti VE, Cipolla-Neto J, Abreu LC, Barros EPM, Sorpreso ICE, Baracat MCP, Baracat EC, Soares Junior JM (2019) Repercussions of melatonin on the risk of breast cancer: a systematic review and meta-analysis. Rev Assoc Med Bras (1992) 65(5):699–705. https://doi.org/10.1590/1806-9282.65.5.699

    Article  Google Scholar 

  135. Scholtens RM, van Munster BC, van Kempen MF, de Rooij SE (2016) Physiological melatonin levels in healthy older people: a systematic review. J Psychosom Res 86:20–27. https://doi.org/10.1016/j.jpsychores.2016.05.005

    Article  PubMed  Google Scholar 

  136. Andersen LP, Gogenur I, Rosenberg J, Reiter RJ (2016) The safety of melatonin in humans. Clin Drug Investig 36(3):169–175. https://doi.org/10.1007/s40261-015-0368-5

    Article  CAS  PubMed  Google Scholar 

  137. Gringras P, Nir T, Breddy J, Frydman-Marom A, Findling RL (2017) Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 56(11):948 e944–957 e944. https://doi.org/10.1016/j.jaac.2017.09.414

    Article  Google Scholar 

  138. Barchas J, DaCosta F, Spector S (1967) Acute pharmacology of melatonin. Nature 214(5091):919–920. https://doi.org/10.1038/214919a0

    Article  CAS  PubMed  Google Scholar 

  139. Ma Z, Yang Y, Fan C, Han J, Wang D, Di S, Hu W, Liu D, Li X, Reiter RJ, Yan X (2016) Melatonin as a potential anticarcinogen for non-small-cell lungcancer. Oncotarget 7(29):46768–46784. https://doi.org/10.18632/oncotarget.8776

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chao YH, Wu KH, Yeh CM, Su SC, Reiter RJ, Yang SF (2019) The potential utility of melatonin in the treatment of childhood cancer. J Cell Physiol 234(11):19158–19166. https://doi.org/10.1002/jcp.28566

    Article  CAS  PubMed  Google Scholar 

  141. Govender J, Loos B, Marais E, Engelbrecht AM (2014) Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res 57(4):367–380. https://doi.org/10.1111/jpi.12176

    Article  CAS  PubMed  Google Scholar 

  142. Guven C, Taskin E, Akcakaya H (2016) Melatonin prevents mitochondrial damage induced by doxorubicin in mouse fibroblasts through Ampk-Ppar gamma-dependent mechanisms. Med Sci Monit 22:438–446. https://doi.org/10.12659/msm.897114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G (2003) Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res 35(1):12–15. https://doi.org/10.1034/j.1600-079x.2003.00032.x

    Article  CAS  PubMed  Google Scholar 

  144. Innominato PF, Lim AS, Palesh O, Clemons M, Trudeau M, Eisen A, Wang C, Kiss A, Pritchard KI, Bjarnason GA (2016) The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support Care Cancer 24(3):1097–1105. https://doi.org/10.1007/s00520-015-2883-6

    Article  PubMed  Google Scholar 

  145. Maria S, Samsonraj RM, Munmun F, Glas J, Silvestros M, Kotlarczyk MP, Rylands R, Dudakovic A, van Wijnen AJ, Enderby LT, Lassila H, Dodda B, Davis VL, Balk J, Burow M, Bunnell BA, Witt-Enderby PA (2018) Biological effects of melatonin on osteoblastt/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res 64:3. https://doi.org/10.1111/jpi.12465

    Article  CAS  Google Scholar 

  146. Monaco ME (2017) Fatty acid metabolism in breast cancer subtypes. Oncotarget 8(17):29487–29500. https://doi.org/10.18632/oncotarget.15494

    Article  PubMed  PubMed Central  Google Scholar 

  147. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161. https://doi.org/10.1016/j.cmet.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73(2):377–392. https://doi.org/10.1007/s00018-015-2070-4

    Article  CAS  PubMed  Google Scholar 

  149. Nordlund JJ, Lerner AB (1977) The effects of oral melatonin on skin color and on the release of pituitary hormones. J Clin Endocrinol Metab 45(4):768–774. https://doi.org/10.1210/jcem-45-4-768

    Article  CAS  PubMed  Google Scholar 

  150. Jin JX, Lee S, Taweechaipaisankul A, Kim GA, Lee BC (2017) Melatonin regulates lipid metabolism in porcine oocytes. J Pineal Res 62:2. https://doi.org/10.1111/jpi.12388

    Article  CAS  Google Scholar 

  151. Cipolla-Neto J, Amaral FGD (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr Rev 39(6):990–1028. https://doi.org/10.1210/er.2018-00084

    Article  PubMed  Google Scholar 

  152. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2017) Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. Cell Mol Life Sci 74(21):3897–3911. https://doi.org/10.1007/s00018-017-2619-5

    Article  CAS  PubMed  Google Scholar 

  153. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52. https://doi.org/10.1016/j.ccr.2009.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675. https://doi.org/10.1016/j.tibs.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bell EL, Emerling BM, Ricoult SJ, Guarente L (2011) SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30(26):2986–2996. https://doi.org/10.1038/onc.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RJR conceived the idea and, after soliciting input from all co-authors (RS, QM, SRC and LGC), wrote the preliminary version of the report. The preliminary report was read by all co-authors who provided comments and suggestions for revisions after which changes were incorporated into additional versions of the manuscript by RJR. Figures were prepared and revised by RS, QM, SRC and LGC. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Russel J. Reiter.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, R.J., Sharma, R., Ma, Q. et al. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell. Mol. Life Sci. 77, 2527–2542 (2020). https://doi.org/10.1007/s00018-019-03438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03438-1

Keywords

Navigation