Skip to main content
Log in

Multi-tissue to whole plant metabolic modelling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Genome-scale metabolic models have been successfully applied to study the metabolism of multiple plant species in the past decade. While most existing genome-scale modelling studies have focussed on studying the metabolic behaviour of individual plant metabolic systems, there is an increasing focus on combining models of multiple tissues or organs to produce multi-tissue models that allow the investigation of metabolic interactions between tissues and organs. Multi-tissue metabolic models were constructed for multiple plants including Arabidopsis, barley, soybean and Setaria. These models were applied to study various aspects of plant physiology including the division of labour between organs, source and sink tissue relationship, growth of different tissues and organs and charge and proton balancing. In this review, we outline the process of constructing multi-tissue genome-scale metabolic models, discuss the strengths and challenges in using multi-tissue models, review the current status of plant multi-tissue and whole plant metabolic models and explore the approaches for integrating genome-scale metabolic models into multi-scale plant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184(16):4582–4593

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (i JR904 GSM/GPR). Genome Biol 4(9):R54

    PubMed  PubMed Central  Google Scholar 

  3. Poolman MG, Kundu S, Shaw R, Fell D (2013) Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol 162(2):1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaw R, Kundu S (2015) Metabolic plasticity and inter-compartmental interactions in rice metabolism: an analysis from reaction deletion study. PLoS One 10(7):e0133899

    PubMed  PubMed Central  Google Scholar 

  6. Thiele I, Vo TD, Price ND, Palsson BØ (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants. J Bacteriol 187(16):5818–5830

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc Natl Acad Sci 109(18):E1121–E1130

    CAS  PubMed  Google Scholar 

  8. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320

    PubMed  PubMed Central  Google Scholar 

  9. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzaeRd metabolic genotype. J Biol Chem 274(25):17410–17416

    CAS  PubMed  Google Scholar 

  10. Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131

    CAS  PubMed  Google Scholar 

  11. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    CAS  PubMed  Google Scholar 

  12. Chatterjee A, Huma B, Shaw R, Kundu S (2017) Reconstruction of Oryza sativa indica genome scale metabolic model and its responses to varying rubisco activity, light intensity, and enzymatic cost conditions. Front Plant Sci 8:2060

    PubMed  PubMed Central  Google Scholar 

  13. de Oliveira DalMolin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589

    Google Scholar 

  14. Cheung CYM, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2013) A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J 75(6):1050–1061

    CAS  PubMed  Google Scholar 

  15. Shaw R, Cheung CM (2019) A mass and charge balanced metabolic model of Setaria viridis revealed mechanisms of proton balancing in C4 plants. BMC Bioinform 20(1):357

    Google Scholar 

  16. Cheung CYM, Ratcliffe RG, Sweetlove LJ (2015) A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf. Plant Physiol 169(3):1671–1682

    PubMed  PubMed Central  Google Scholar 

  17. Sweetlove LJ, Ratcliffe RG (2011) Flux-balance modeling of plant metabolism. Front Plant Sci 2:38

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong JH, Savina M, Du J, Devendran A, Ramakanth KK, Tian X, Sim WS, Mironova VV, Xu J (2017) A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170(1):102–113

    CAS  PubMed  Google Scholar 

  19. Lup SD, Tian X, Xu J, Perez-Perez JM (2016) Wound signaling of regenerative cell reprogramming. Plant Sci 250:178–187

    CAS  PubMed  Google Scholar 

  20. Shaw R, Cheung CYM (2018) A dynamic multi-tissue flux balance model captures carbon and nitrogen metabolism and optimal resource partitioning during Arabidopsis growth. Front Plant Sci 9:884

    PubMed  PubMed Central  Google Scholar 

  21. Batista Moreira T, Shaw R, Luo X, Ganguly O, Kim HS, Ferreira Coelho LG, Cheung CYM, Williams TC (2019) A genome-scale metabolic model of soybean (Glycine max) highlights metabolic fluxes in seedlings. Plant Physiol 180(4):1912–1929

    Google Scholar 

  22. Grafahrend-Belau E, Junker A, Eschenroder A, Muller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163(2):637–647

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Hwa C (2008) Genetic modification of plant architecture and variety improvement in rice. Heredity 101(5):396

    CAS  PubMed  Google Scholar 

  24. Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132(3):506S–510S

    PubMed  Google Scholar 

  25. Schlapfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T et al (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gevorgyan A, Poolman MG, Fell DA (2008) Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics 24(19):2245–2251

    CAS  PubMed  Google Scholar 

  27. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245

    CAS  PubMed  PubMed Central  Google Scholar 

  28. de Oliveira DalMolin CG, Quek LE, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4

    Google Scholar 

  29. Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci 109(1):339–344

    CAS  PubMed  Google Scholar 

  30. Robaina Estévez S, Nikoloski Z (2014) Generalized framework for context-specific metabolic model extraction methods. Front Plant Sci 19(5):491

    Google Scholar 

  31. Scheunemann M, Brady SM, Nikoloski Z (2018) Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 8(1):7919

    PubMed  PubMed Central  Google Scholar 

  32. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132(2):453–460

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Estevez SR, Nikoloski Z (2015) Context-specific metabolic model extraction based on regularized least squares optimization. PLoS One 10(7):e0131875

    Google Scholar 

  35. Li S, Yamada M, Han X, Ohler U, Benfey PN (2016) High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39(4):508–522

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6(7):e21784

    CAS  PubMed  PubMed Central  Google Scholar 

  37. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885

    PubMed Central  Google Scholar 

  38. Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, De Visser PH (2009) Functional–structural plant modelling: a new versatile tool in crop science. J Exp Bot 61(8):2101–2115

    PubMed  Google Scholar 

  39. Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, De Reffye P et al (2014) Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci 111(39):E4127–E4136

    CAS  PubMed  Google Scholar 

  40. Rasse DP, Tocquin P (2006) Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model. New Phytol 172(3):500–513

    CAS  PubMed  Google Scholar 

  41. Chew YH, Wilczek AM, Williams M, Welch SM, Schmitt J, Halliday KJ (2012) An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol 194(3):654–665

    PubMed  Google Scholar 

  42. Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1(1):0013

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Maurice Cheung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, R., Cheung, C.Y.M. Multi-tissue to whole plant metabolic modelling. Cell. Mol. Life Sci. 77, 489–495 (2020). https://doi.org/10.1007/s00018-019-03384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03384-y

Keywords

Navigation