Skip to main content
Log in

Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CVDs:

Cardiovascular diseases

Cys:

Cysteine

DIO:

Iodothyronine deiodinases

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

FGD:

Familial glucocorticoid deficiency

GPX:

Glutathione peroxidase

H2O2 :

Hydrogen peroxide

HbA1c:

Glycated hemoglobin

HF:

Heart failure

HNO:

Azanone

I/R:

Ischemia/reperfusion

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

Met:

Methionine

MI:

Myocardial infarction

MSRB1:

Methionine sulfoxide reductase B1

NO:

Nitric oxide

O ·2 :

Superoxide radical

OH· :

Hydroxyl radical

ONOO-:

Peroxynitrite

PACAP:

Pituitary adenylate cyclase-activating peptide

PCH2D:

Ponto-cerebellar hypoplasia type 2D

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSNO:

S-Nitrosothiols

S:

Sulfur

Se:

Selenium

Sec:

Selenocysteine

SECISBP2:

SECIS binding protein 2

SELENOH:

Selenoprotein H

SELENOI:

Selenoprotein I

SELENOK:

Selenoprotein K

SELENOM:

Selenoprotein M

SELENON:

Selenoprotein N

SELENOO:

Selenoprotein O

SELENOP:

Selenoprotein P

SELENOS:

Selenoprotein S

SELENOT:

Selenoprotein T

SELENOV:

Selenoprotein V

SELENOW:

Selenoprotein W

SELENOF:

Selenoprotein F

SEPHS2:

Selenophosphate synthetase 2

SEPSECS:

Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase

SNPs:

Single nucleotide polymorphisms

STEMI:

ST-segment elevation MI

TNF-α:

Tumor necrosis factor-α

TRU-TCA1-1:

Transfer RNA-Sec [TCA] 1-1

Trx:

Thioredoxin

TXNRD:

Thioredoxin reductase

UPR:

Unfolded protein response

References

  1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M (2016) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 37(42):3232–3245

    PubMed  Google Scholar 

  2. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y (2009) Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):480–486

    PubMed  Google Scholar 

  3. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32(7):1552–1562

    CAS  PubMed  Google Scholar 

  4. Beckman KB, Ames BN (1999) Endogenous oxidative damage of mtDNA. Mutat Res 424(1–2):51–58

    CAS  PubMed  Google Scholar 

  5. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907

    CAS  PubMed  Google Scholar 

  6. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916

    PubMed  Google Scholar 

  7. Schmidt MR, Jespersen NR, Bøtker HE (2016) Mechanical interventions to reduce myocardial infarct size. Heart Metab 70:8–13

    Google Scholar 

  8. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88(2):581–609

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460

    CAS  PubMed  Google Scholar 

  10. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guérin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Randé JL, Unterseeh T, Le Breton H, Béard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373(11):1021–1031

    CAS  PubMed  Google Scholar 

  11. Forsberg L, de Faire U, Morgenstern R (2001) Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys 389(1):84–93

    CAS  PubMed  Google Scholar 

  12. Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D, Flohé L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    CAS  PubMed  Google Scholar 

  13. Raes M, Michiels C, Remacle J (1987) Comparative study of the enzymatic defense systems against oxygen-derived free radicals: the key role of glutathione peroxidase. Free Radic Biol Med 3(1):3–7

    CAS  PubMed  Google Scholar 

  14. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284(2):723–727

    CAS  PubMed  Google Scholar 

  15. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    CAS  PubMed  Google Scholar 

  16. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hondal RJ, Marino SM, Gladyshev VN (2013) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 18(13):1675–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790(11):1478–1485

    CAS  PubMed  Google Scholar 

  19. Rose AH, Hoffmann PR (2015) Selenoproteins and cardiovascular stress. Thromb Haemost 113(3):494–504

    PubMed  Google Scholar 

  20. Atkins JF, Gesteland RF (2000) The twenty-first amino acid. Nature 407(6803):463–465

    CAS  PubMed  Google Scholar 

  21. Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, Stoppe C (2015) Selenium and its supplementation in cardiovascular disease what do we know? Nutrients 7(5):3094–3118

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5(3):515–520

    PubMed  Google Scholar 

  23. Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel). 7(5):66

    PubMed Central  Google Scholar 

  24. Mariotti M, Salinas G, Gabaldón T, Gladyshev VN (2019) Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 4(5):759–765

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388(10):997–1006

    CAS  PubMed  Google Scholar 

  26. Zhong L, Arnér ES, Holmgren A (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci USA 97(11):5854–5859

    CAS  PubMed  Google Scholar 

  27. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    CAS  PubMed  Google Scholar 

  28. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806

    CAS  PubMed  Google Scholar 

  29. Nauser T, Steinmann D, Koppenol WH (2012) Why do proteins use selenocysteine instead of cysteine? Amino Acids 42(1):39–44

    CAS  PubMed  Google Scholar 

  30. Bianco CL, Moore CD, Fukuto JM, Toscano JP (2016) Selenols are resistant to irreversible modification by HNO. Free Radic Biol Med 99:71–78

    CAS  PubMed  Google Scholar 

  31. Snider GW, Ruggles E, Khan N, Hondal RJ (2013) Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry 52(32):5472–5481

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto-Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409.e21–422.e21

    Google Scholar 

  33. Kim HY, Gladyshev VN (2005) Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 3(12):e375

    PubMed  PubMed Central  Google Scholar 

  34. Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353(6341):273–276

    CAS  PubMed  Google Scholar 

  35. Leinfelder W, Stadtman TC, Böck A (1989) Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations. J Biol Chem 264(17):9720–9723

    CAS  PubMed  Google Scholar 

  36. Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Söll D, Lerman-Sagie T, Birk OS (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87(4):538–544

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schweizer U, Fradejas-Villar N (2016) Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 30(11):3669–3681

    CAS  PubMed  Google Scholar 

  38. Fradejas-Villar N (2018) Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med 127:206–214

    CAS  PubMed  Google Scholar 

  39. Anttonen AK, Hilander T, Linnankivi T, Isohanni P, French RL, Liu Y, Simonović M, Söll D, Somer M, Muth-Pawlak D, Corthals GL, Laari A, Ylikallio E, Lähde M, Valanne L, Lönnqvist T, Pihko H, Paetau A, Lehesjoki AE, Suomalainen A, Tyynismaa H (2015) Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology 85(4):306–315

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben-Zeev B, Hoffman C, Lev D, Watemberg N, Malinger G, Brand N, Lerman-Sagie T (2003) Progressive cerebellocerebral atrophy: a new syndrome with microcephaly, mental retardation, and spastic quadriplegia. J Med Genet 40(8):e96

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C, Luan J, Montano S, Lu J, Castanet M, Clemons N, Groeneveld M, Castets P, Karbaschi M, Aitken S, Dixon A, Williams J, Campi I, Blount M, Burton H, Muntoni F, O’Donovan D, Dean A, Warren A, Brierley C, Baguley D, Guicheney P, Fitzgerald R, Coles A, Gaston H, Todd P, Holmgren A, Khanna KK, Cooke M, Semple R, Halsall D, Wareham N, Schwabe J, Grasso L, Beck-Peccoz P, Ogunko A, Dattani M, Gurnell M, Chatterjee K (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Investig 120(12):4220–4235

    CAS  PubMed  Google Scholar 

  42. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S (2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37(11):1247–1252

    CAS  PubMed  Google Scholar 

  43. Schoenmakers E, Carlson B, Agostini M, Moran C, Rajanayagam O, Bochukova E, Tobe R, Peat R, Gevers E, Muntoni F, Guicheney P, Schoenmakers N, Farooqi S, Lyons G, Hatfield D, Chatterjee K (2016) Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Investig 126(3):992–996

    PubMed  Google Scholar 

  44. Schoenmakers E, Chatterjee K (2018) Identification of genetic disorders causing disruption of selenoprotein biosynthesis. Methods Mol Biol 1661:325–335

    CAS  PubMed  Google Scholar 

  45. Bösl MR, Takaku K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci USA 94(11):5531–5534

    PubMed  Google Scholar 

  46. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32(1):132–134

    CAS  PubMed  Google Scholar 

  47. Gong T, Torres DJ, Berry MJ, Pitts MW (2018) Hypothalamic redox balance and leptin signaling—emerging role of selenoproteins. Free Radic Biol Med 127:172–181

    CAS  PubMed  Google Scholar 

  48. Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G (2001) Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc Natl Acad Sci USA 98(17):9533–9538

    CAS  PubMed  Google Scholar 

  49. Tamura K, Schimmel P (2000) Trial for peptide bond formation using model molecules based on the interactions between the CCA sequence of tRNA and 23S rRNA. Nucleic Acids Symp Ser 44:251–252

    Google Scholar 

  50. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2012) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89

    Google Scholar 

  51. Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohé L, Green FR, Guigó R, Handy DE, Hatfield DL, Hesketh J, Hoffmann PR, Holmgren A, Hondal RJ, Howard MT, Huang K, Kim HY, Kim IY, Köhrle J, Krol A, Kryukov GV, Lee BJ, Lee BC, Lei XG, Liu Q, Lescure A, Lobanov AV, Loscalzo J, Maiorino M, Mariotti M, Sandeep Prabhu K, Rayman MP, Rozovsky S, Salinas G, Schmidt EE, Schomburg L, Schweizer U, Simonović M, Sunde RA, Tsuji PA, Tweedie S, Ursini F, Whanger PD, Zhang Y (2016) Selenoprotein gene nomenclature. J Biol Chem 291(46):24036–24040

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46(23):6871–6882

    CAS  PubMed  Google Scholar 

  53. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274(53):38147–38154

    CAS  PubMed  Google Scholar 

  54. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Zhang W (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 28(8):3579–3588

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54

    CAS  PubMed  Google Scholar 

  56. Hurst R, Armah CN, Dainty JR, Hart DJ, Teucher B, Goldson AJ, Broadley MR, Motley AK, Fairweather-Tait SJ (2010) Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91(4):923–931

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pitts MW, Hoffmann PR (2018) Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 70:76–86

    CAS  PubMed  Google Scholar 

  58. Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, Mercier F, Hoffmann PR (2014) Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci USA 111(46):16478–16483

    CAS  PubMed  Google Scholar 

  59. Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, Pinton P, Zito E (2015) SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet 24(7):1843–1855

    CAS  PubMed  Google Scholar 

  60. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D, Leprince J, Guérineau NC, Elkahloun AG, Fournier A, Vieau D, Vaudry H, Anouar Y (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22(6):1756–1768

    CAS  PubMed  Google Scholar 

  61. Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L (2018) Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 127:145–152

    CAS  PubMed  Google Scholar 

  62. Hamieh A, Cartier D, Abid H, Calas A, Burel C, Bucharles C, Jehan C, Grumolato L, Landry M, Lerouge P, Anouar Y, Lihrmann I (2017) Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Rep 18(11):1935–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fallab S (1967) Reactions with molecular oxygen, vol 6. Angewandte Chemie International Edition in English, New York, pp 496–507

    Google Scholar 

  64. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531(Pt 1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rahman T, Hosen I, Islam M, Shekhar H (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3:997–1019. https://doi.org/10.4236/abb.2012.327123

    Article  CAS  Google Scholar 

  67. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45(5):549–561

    CAS  PubMed  Google Scholar 

  69. Touat-Hamici Z, Legrain Y, Bulteau AL, Chavatte L (2014) Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem 289(21):14750–14761

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK (2006) The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 26(13):4895–4910

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kasaikina MV, Hatfield DL, Gladyshev VN (2012) Understanding selenoprotein function and regulation through the use of rodent models. Biochim Biophys Acta 1823(9):1633–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Conrad M, Schweizer U (2010) Unveiling the molecular mechanisms behind selenium-related diseases through knockout mouse studies. Antioxid Redox Signal 12(7):851–865

    CAS  PubMed  Google Scholar 

  73. Conrad M (2009) Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta 1790(11):1575–1585

    CAS  PubMed  Google Scholar 

  74. Jakupoglu C, Przemeck GKH, Schneider M, Moreno SG, Mayr N, Hatzopoulos AK, de Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, Conrad M (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25(5):1980–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24(21):9414–9423

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M, Kitamoto T, Hayasaka M, Hanaoka K, Nakagawa Y (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305(2):278–286

    CAS  PubMed  Google Scholar 

  77. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278(16):13640–13646

    CAS  PubMed  Google Scholar 

  78. Schomburg L, Schweizer U, Holtmann B, Flohé L, Sendtner M, Köhrle J (2003) Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J. 370(Pt 2):397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Boukhzar L, Hamieh A, Cartier D, Tanguy Y, Alsharif I, Castex M, Arabo A, El Hajji S, Bonnet JJ, Errami M, Falluel-Morel A, Chagraoui A, Lihrmann I, Anouar Y (2016) Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of parkinson’s disease. Antioxid Redox Signal 24(11):557–574

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A (2016) Selenoprotein T deficiency leads to neurodevelopmental abnormalities and hyperactive behavior in mice. Mol Neurobiol 53(9):5818–5832

    CAS  PubMed  Google Scholar 

  81. Cheng WH, Ho YS, Ross DA, Valentine BA, Combs GF, Lei XG (1997) Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr 127(8):1445–1450

    CAS  PubMed  Google Scholar 

  82. Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A, Carlson BA, Lee TH, Kim HY, Hatfield DL, Gladyshev VN (2009) MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 284(9):5986–5993

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Suzuki T, Kelly VP, Motohashi H, Nakajima O, Takahashi S, Nishimura S, Yamamoto M (2008) Deletion of the selenocysteine tRNA gene in macrophages and liver results in compensatory gene induction of cytoprotective enzymes by Nrf2. J Biol Chem 283(4):2021–2030

    CAS  PubMed  Google Scholar 

  84. Kawatani Y, Suzuki T, Shimizu R, Kelly VP, Yamamoto M (2011) Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood 117(3):986–996

    CAS  PubMed  Google Scholar 

  85. Rayman MP (2000) The importance of Se to human health. Lancet 356(9225):233–241

    CAS  PubMed  Google Scholar 

  86. Shrimali RK, Weaver JA, Miller GF, Starost MF, Carlson BA, Novoselov SV, Kumaraswamy E, Gladyshev VN, Hatfield DL (2007) Selenoprotein expression is essential in endothelial cell development and cardiac muscle function. Neuromuscul Disord 17(2):135–142

    PubMed  Google Scholar 

  87. Puccio H, Simon D, Cossée M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27(2):181–186

    CAS  PubMed  Google Scholar 

  88. Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K, Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann HE, Kremmer E, Schäfer Z, Walch A, Hinterseer M, Näbauer M, Kääb S, Kastrati A, Schömig A, Meitinger T, Bornkamm GW, Conrad M, von Beckerath N (2011) Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J 32(9):1121–1133

    CAS  PubMed  Google Scholar 

  89. Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJ, Storr HL, Metherell LA (2014) Thioredoxin reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab 99(8):E1556–E1563

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Clark AJ, Chan LF, Chung TT, Metherell LA (2009) The genetics of familial glucocorticoid deficiency. Best Pract Res Clin Endocrinol Metab 23(2):159–165

    CAS  PubMed  Google Scholar 

  91. Kiermayer C, Northrup E, Schrewe A, Walch A, de Angelis MH, Schoensiegel F, Zischka H, Prehn C, Adamski J, Bekeredjian R, Ivandic B, Kupatt C, Brielmeier M (2015) Heart-specific knockout of the mitochondrial thioredoxin reductase (Txnrd2) induces metabolic and contractile dysfunction in the aging myocardium. J Am Heart Assoc 4(7):e002153

    PubMed  PubMed Central  Google Scholar 

  92. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wentzel P, Gäreskog M, Eriksson UJ (2008) Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes 57(12):3344–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J (2002) Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation 106(9):1154–1158

    CAS  PubMed  Google Scholar 

  95. Ishida K, Morino T, Takagi K, Sukenaga Y (1987) Nucleotide sequence of a human gene for glutathione peroxidase. Nucleic Acids Res 15(23):10051

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kiss C, Li J, Szeles A, Gizatullin RZ, Kashuba VI, Lushnikova T, Protopopov AI, Kelve M, Kiss H, Kholodnyuk ID, Imreh S, Klein G, Zabarovsky ER (1997) Assignment of the ARHA and GPX1 genes to human chromosome bands 3p21.3 by in situ hybridization and with somatic cell hybrids. Cytogenet Cell Genet 79(3–4):228–230

    CAS  PubMed  Google Scholar 

  97. Winter JP, Gong Y, Grant PJ, Wild CP (2003) Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron Artery Dis 14(2):149–153

    PubMed  Google Scholar 

  98. Hamanishi T, Furuta H, Kato H, Doi A, Tamai M, Shimomura H, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in japanese type 2 diabetic patients. Diabetes 53(9):2455–2460

    CAS  PubMed  Google Scholar 

  99. Moscow JA, Schmidt L, Ingram DT, Gnarra J, Johnson B, Cowan KH (1994) Loss of heterozygosity of the human cytosolic glutathione peroxidase I gene in lung cancer. Carcinogenesis 15(12):2769–2773

    CAS  PubMed  Google Scholar 

  100. Nemoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 7(6):23

    Google Scholar 

  101. Oguri M, Kato K, Hibino T, Yokoi K, Segawa T, Matsuo H, Watanabe S, Nozawa Y, Murohara T, Yamada Y (2007) Genetic risk for restenosis after coronary stenting. Atherosclerosis 194(2):e172–e178

    CAS  PubMed  Google Scholar 

  102. Zhang JX, Wang ZM, Zhang JJ, Zhu LL, Gao XF, Chen SL (2014) Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a meta-analysis of observational studies. J Geriatr Cardiol 11(2):141–150

    PubMed  PubMed Central  Google Scholar 

  103. Tang NP, Wang LS, Yang L, Gu HJ, Sun QM, Cong RH, Zhou B, Zhu HJ, Wang B (2008) Genetic variant in glutathione peroxidase 1 gene is associated with an increased risk of coronary artery disease in a Chinese population. Clin Chim Acta 395(1–2):89–93

    CAS  PubMed  Google Scholar 

  104. Ravn-Haren G, Olsen A, Tjønneland A, Dragsted LO, Nexø BA, Wallin H, Overvad K, Raaschou-Nielsen O, Vogel U (2006) Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27(4):820–825

    CAS  PubMed  Google Scholar 

  105. Hu YJ, Diamond AM (2003) Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res 63(12):3347–3351

    CAS  PubMed  Google Scholar 

  106. Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, Nagasawa S, Takahashi K (2002) A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem 277(43):41254–41258

    CAS  PubMed  Google Scholar 

  107. Jin RC, Mahoney CE, Coleman Anderson L, Ottaviano F, Croce K, Leopold JA, Zhang YY, Tang SS, Handy DE, Loscalzo J (2011) Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo. Circulation 123(18):1963–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang GR, Zhu Y, Halushka PV, Lincoln TM, Mendelsohn ME (1998) Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 95(9):4888–4893

    CAS  PubMed  Google Scholar 

  109. Lubos E, Handy DE, Loscalzo J (2008) Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci 13:5323–5344

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88(8):756–762

    CAS  PubMed  Google Scholar 

  111. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD (1996) Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Investig 97(4):979–987

    CAS  PubMed  Google Scholar 

  112. Voetsch B, Jin RC, Bierl C, Benke KS, Kenet G, Simioni P, Ottaviano F, Damasceno BP, Annichino-Bizacchi JM, Handy DE, Loscalzo J (2007) Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke 38(1):41–49

    CAS  PubMed  Google Scholar 

  113. Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, Vavva F, Brand N, Michelson A, Trolliet M, Loscalzo J, Inbal A (1999) Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterioscler Thromb Vasc Biol 19(8):2017–2023

    CAS  PubMed  Google Scholar 

  114. Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE, Kuhn H (2006) The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem 281(28):19655–19664

    CAS  PubMed  Google Scholar 

  115. Smith AC, Mears AJ, Bunker R, Ahmed A, MacKenzie M, Schwartzentruber JA, Beaulieu CL, Ferretti E, FORGE Canada Consortium, Majewski J, Bulman DE, Celik FC, Boycott KM, Graham GE (2014) Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia. J Med Genet 51(7):470–474

    CAS  PubMed  Google Scholar 

  116. Sedaghatian MR (1980) Congenital lethal metaphyseal chondrodysplasia: a newly recognized complex autosomal recessive disorder. Am J Med Genet 6(4):269–274

    CAS  PubMed  Google Scholar 

  117. Aygun C, Celik FC, Nural MS, Azak E, Kucukoduk S, Ogur G, Incesu L (2012) Simplified gyral pattern with cerebellar hypoplasia in Sedaghatian type spondylometaphyseal dysplasia: a clinical report and review of the literature. Am J Med Genet A 158A(6):1400–1405

    PubMed  Google Scholar 

  118. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 98(23):12920–12925

    CAS  PubMed  Google Scholar 

  119. Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703(2):213–219

    CAS  PubMed  Google Scholar 

  120. Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274(48):33888–33897

    CAS  PubMed  Google Scholar 

  121. Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A (2010) Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J Biol Chem 285(43):33315–33323

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hoffmann FW, Hashimoto AS, Lee BC, Rose AH, Shohet RV, Hoffmann PR (2011) Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Arch Biochem Biophys 512(1):38–44

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim HY, Gladyshev VN (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407(3):321–329

    CAS  PubMed  Google Scholar 

  124. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, Sadoshima J (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Investig 112(9):1395–1406

    CAS  PubMed  Google Scholar 

  125. Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC (2017) Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol 70(2):212–229

    PubMed  PubMed Central  Google Scholar 

  126. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ, AtheroGene Investigators (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349(17):1605–1613

    CAS  PubMed  Google Scholar 

  127. Pastori D, Pignatelli P, Farcomeni A, Menichelli D, Nocella C, Carnevale R, Violi F (2016) Aging-related decline of glutathione peroxidase 3 and risk of cardiovascular events in patients with atrial fibrillation. J Am Heart Assoc 5(9):e003682

    PubMed  PubMed Central  Google Scholar 

  128. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    CAS  PubMed  Google Scholar 

  129. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J, Abel Azim DM, Cai G, Mahaney MC, Comuzzie AG, Dyer TD, Walder KR, Zimmet P, MacCluer JW, Collier GR, Kissebah AH, Blangero J (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37(11):1234–1241

    CAS  PubMed  Google Scholar 

  131. Gao Y, Hannan NR, Wanyonyi S, Konstantopolous N, Pagnon J, Feng HC, Jowett JB, Kim KH, Walder K, Collier GR (2006) Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine 33(5):246–251

    CAS  PubMed  Google Scholar 

  132. Alanne M, Kristiansson K, Auro K, Silander K, Kuulasmaa K, Peltonen L, Salomaa V, Perola M (2007) Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum Genet 122(3–4):355–365

    CAS  PubMed  Google Scholar 

  133. Cox AJ, Lehtinen AB, Xu J, Langefeld CD, Freedman BI, Carr JJ, Bowden DW (2013) Polymorphisms in the selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol 50(3):391–399

    CAS  PubMed  Google Scholar 

  134. Strauss E, Tomczak J, Staniszewski R, Oszkinis G (2018) Associations and interactions between variants in selenoprotein genes, selenoprotein levels and the development of abdominal aortic aneurysm, peripheral arterial disease, and heart failure. PLoS One 13(9):e0203350

    PubMed  PubMed Central  Google Scholar 

  135. Lu C, Qiu F, Zhou H, Peng Y, Hao W, Xu J, Yuan J, Wang S, Qiang B, Xu C, Peng X (2006) Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett 580(22):5189–5197

    CAS  PubMed  Google Scholar 

  136. Liu J, Zhang Z, Rozovsky S (2014) Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential. FEBS Lett 588(18):3311–3321

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Du S, Zhou J, Jia Y, Huang K (2010) SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch Biochem Biophys 502(2):137–143

    CAS  PubMed  Google Scholar 

  138. Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN (2011) Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 286(50):42937–42948

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186(4):2127–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang Z, Hoffmann FW, Fay JD, Hashimoto AC, Chapagain ML, Kaufusi PH, Hoffmann PR (2012) Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J Biol Chem 287(7):4492–4502

    CAS  PubMed  Google Scholar 

  141. Meiler S, Baumer Y, Huang Z, Hoffmann FW, Fredericks GJ, Rose AH, Norton RL, Hoffmann PR, Boisvert WA (2013) Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis. J Leukoc Biol 93(5):771–780

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8(10):802–815

    CAS  PubMed  Google Scholar 

  143. Baqui M, Botero D, Gereben B, Curcio C, Harney JW, Salvatore D, Sorimachi K, Larsen PR, Bianco AC (2003) Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278(2):1206–1211

    CAS  PubMed  Google Scholar 

  144. Arrojo E, Drigo R, Bianco AC (2011) Type 2 deiodinase at the crossroads of thyroid hormone action. Int J Biochem Cell Biol 43(10):1432–1441

    Google Scholar 

  145. Arrojo e Drigo R, Fonseca TL, Castillo M, Salathe M, Simovic G, Mohacsik P, Gereben B, Bianco AC (2011) Endoplasmic reticulum stress decreases intracellular thyroid hormone activation via an eIF2a-mediated decrease in type 2 deiodinase synthesis. Mol Endocrinol 25:2065–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang S, Binder P, Fang Q, Wang Z, Xiao W, Liu W, Wang X (2018) Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol 175(8):1293–1304

    CAS  PubMed  Google Scholar 

  147. Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci USA 99(7):4245–4250

    CAS  PubMed  Google Scholar 

  148. Grumolato L, Elkahloun AG, Ghzili H, Alexandre D, Coulouarn C, Yon L, Salier JP, Eiden LE, Fournier A, Vaudry H, Anouar Y (2003) Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology 144(6):2368–2379

    CAS  PubMed  Google Scholar 

  149. Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y, Angelone T (2018) A selenoprotein T-derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol (Oxf) 223(4):e13067

    CAS  Google Scholar 

  150. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J Clin Investig 123(1):92–100

    CAS  PubMed  Google Scholar 

  151. Venardos KM, Perkins A, Headrick J, Kaye DM (2007) Myocardial ischemia–reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem 14(14):1539–1549

    CAS  PubMed  Google Scholar 

  152. Li JP, Zhou JX, Wang Q, Gu GQ, Yang SJ, Li CY, Qiu CW, Deng GZ, Guo MY (2016) Se Enhances MLCK activation by regulating selenoprotein T (SelT) in the gastric smooth muscle of rats. Biol Trace Elem Res 173(1):116–125

    CAS  PubMed  Google Scholar 

  153. Whanger PD (2009) Selenoprotein expression and function-selenoprotein W. Biochim Biophys Acta 1790(11):1448–1452

    CAS  PubMed  Google Scholar 

  154. Whanger PD, Ip C, Polan CE, Uden PC, Welbaum G (2000) Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched ramps (Allium tricoccum). J Agric Food Chem 48(11):5723–5730

    CAS  PubMed  Google Scholar 

  155. Gu QP, Sun Y, Ream LW, Whanger PD (2000) Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem 204(1–2):49–56

    CAS  PubMed  Google Scholar 

  156. Låg M, Refsnes M, Lilleaas EM, Holme JA, Becher R, Schwarze PE (2005) Role of mitogen activated protein kinases and protein kinase C in cadmium induced apoptosis of primary epithelial lung cells. Toxicology 211:253–264

    PubMed  Google Scholar 

  157. Yi JH, Park SW, Kapadia R, Vemuganti R (2007) Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int 50:1014–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Haidong Y, Wei L, Wenchao Z, Ruifeng F, Xia Z, Pervez Ahmed K, Ziwei Z, Shiwen X (2014) Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 4:64032

    Google Scholar 

  159. Liu W, Yao H, Zhao W, Shi Y, Zhang Z, Xu S (2016) Selenoprotein W was correlated with the protective effect of selenium on chicken myocardial cells from oxidative damage. Biol Trace Elem Res 171(2):419–426

    CAS  PubMed  Google Scholar 

  160. Yang J, Hamid S, Liu Q, Cai J, Xu S, Zhang Z (2017) Gene expression of selenoproteins can be regulated by thioredoxin(Txn) silence in chicken cardiomyocytes. J Inorg Biochem 177:118–126

    CAS  PubMed  Google Scholar 

  161. Kim YJ, Chai YG, Ryu JC (2005) Selenoprotein W as molecular target of methylmercury in human neuronal cells is down-regulated by GSH depletion. Biochem Biophys Res Commun 330:1095–1102

    CAS  PubMed  Google Scholar 

  162. Sunde RA (2010) mRNA transcripts as molecular biomarkers in medicine and nutrition. J Nutr Biochem 21(8):665–670

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Oropeza-Moe M, Wisløff H, Bernhoft A (2015) Se deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 31:148–156

    CAS  PubMed  Google Scholar 

  164. de Lorgeril M, Salen P, Accominotti M, Cadau M, Steghens JP, Boucher F, de Leiris J (2001) Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of Se in heart failure. Eur J Heart Fail 3(6):661–669

    PubMed  Google Scholar 

  165. Mistry HD, Wilson V, Ramsay MM, Symonds ME, Broughton Pipkin F (2008) Reduced Se concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 52(5):881–888

    CAS  PubMed  Google Scholar 

  166. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799

    PubMed  Google Scholar 

  167. Broughton Pipkin F (2001) Risk factors for preeclampsia. N Engl J Med 344:925–926

    CAS  PubMed  Google Scholar 

  168. Hubel CA (1999) Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 222:222–235

    CAS  PubMed  Google Scholar 

  169. Atamer Y, Kocyigit Y, Yokus B, Atamer A, Erden AC (2005) Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol 119(60):66

    Google Scholar 

  170. Rayman MP, Bode P, Redman CW (2003) Low Se status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 189:1343–1349

    CAS  PubMed  Google Scholar 

  171. Bulgan Kilicdag E, Ay G, Celik A, Ustundag B, Ozercan I, Simsek M (2005) Oxidant-antioxidant system changes relative to placental-umbilical pathology in patients with preeclampsia. Hypertens Pregnancy 24:147–157

    CAS  PubMed  Google Scholar 

  172. Paravicini TM, Drummond GR, Sobey CG (2004) Reactive oxygen species in the cerebral circulation: physiological roles and therapeutic implications for hypertension and stroke. Drugs 64:2143–2157

    CAS  PubMed  Google Scholar 

  173. Arteel GE, Mostert V, Oubrahim H, Briviba K, Abel J, Sies H (1998) Protection by selenoprotein P in human plasma against peroxynitrite mediated oxidation and nitration. Biol Chem 379:1201–1205

    CAS  PubMed  Google Scholar 

  174. Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M, Kohrle J (2003) Gene disruption discloses role of selenoprotein P in Se delivery to target tissues. Biochem J 370:397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Koyama H, Abdulah R, Ohkubo T, Imai Y, Satoh H, Nagai K (2009) Depressed serum selenoprotein P: possible new predicator of increased risk for cerebrovascular events. Nutr Res 29(2):94–99

    CAS  PubMed  Google Scholar 

  176. Gharipour M, Sadeghi M, Salehi M, Behmanesh M, Khosravi E, Dianatkhah M, Haghjoo Javanmard S, Razavi R, Gharipour A (2017) Association of expression of selenoprotein P in mRNA and protein levels with metabolic syndrome in subjects with cardiovascular disease: Results of the Selenegene study. J Gene Med. 19(3):e2945

    Google Scholar 

  177. Büttner P, Obradovic D, Wunderlich S, Feistritzer HJ, Holzwirth E, Lauten P, Fuernau G, de Waha-Thiele S, Desch S, Thiele H (2019) Selenoprotein P in myocardial infarction with cardiogenic shock. Shock. https://doi.org/10.1097/SHK.0000000000001342

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by “Fondazione Umberto Veronesi” Post-Doctoral Fellowship (2019) to TP and by Doctorate School in Life Science, University of Calabria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmine Rocca or Tommaso Angelone.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, C., Pasqua, T., Boukhzar, L. et al. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cell. Mol. Life Sci. 76, 3969–3985 (2019). https://doi.org/10.1007/s00018-019-03195-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03195-1

Keywords

Navigation