Skip to main content

Advertisement

Log in

Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-l-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boffa LC, Karn J, Vidali G, Allfrey VG (1977) Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun 74:969–976

    Article  CAS  PubMed  Google Scholar 

  2. Lee HW, Kim S, Paik WK (1977) S-adenosylmethionine: methyltransferase. Purification and mechanism of the enzyme. Biochemistry 16:78–85

    Article  CAS  PubMed  Google Scholar 

  3. Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG (2012) Human Protein Arginine Methyltransferase 7 (PRMT7) Is a Type III Enzyme Forming omega-N-G-Monomethylated Arginine Residues. J Biol Chem 287:7859–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18:111–120

    Article  CAS  PubMed  Google Scholar 

  5. Horowitz S et al (2013) Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. J Am Chem Soc 135:15536–15548

    Article  CAS  PubMed  Google Scholar 

  6. Tsai YJ et al (2011) The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation. FEBS J 278:905–917

    Article  CAS  PubMed  Google Scholar 

  7. Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR, Clarke S, Herschman HR (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275:7723–7730

    Article  CAS  PubMed  Google Scholar 

  8. Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE (2000) Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20:4859–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cimato TR, Tang J, Xu Y, Guarnaccia C, Herschman HR, Pongor S, Aletta JM (2002) Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1. J Neurosci Res 67:435–442

    Article  CAS  PubMed  Google Scholar 

  10. Qi C, Chang J, Zhu YW, Yeldandi AV, Rao SM, Zhu YJ (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277:28624–28630

    Article  CAS  PubMed  Google Scholar 

  11. Meyer R, Wolf SS, Obendorf M (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107:1–14

    Article  CAS  PubMed  Google Scholar 

  12. Zhong J et al (2014) Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene 33:5546–5558

    Article  CAS  PubMed  Google Scholar 

  13. Oh TG et al (2014) PRMT2 and ROR gamma expression are associated with breast cancer survival outcomes. Mol Endocrinol 28:1166–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bachand F, Silver PA (2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. EMBO J 23:2641–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swiercz R, Person MD, Bedford MT (2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem J 386:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. Febs Lett 585:2024–2031

    Article  CAS  PubMed  Google Scholar 

  17. Miyata S, Mori Y, Tohyama M (2010) PRMT3 is essential for dendritic spine maturation in rat hippocampal neurons. Brain Res 1352:11–20

    Article  CAS  PubMed  Google Scholar 

  18. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177

    Article  CAS  PubMed  Google Scholar 

  19. Feng Q, Yi P, Wong JM, O’Malley BW (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26:7846–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee YH, Koh SS, Zhang X, Cheng XD, Stallcup MR (2002) Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol 22:3621–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naeem H, Cheng DH, Zhao QS, Underhill C, Tini M, Bedford MT, Torchia J (2007) The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol 27:120–134

    Article  CAS  PubMed  Google Scholar 

  22. Xu W, Cho H, Kadam S, Banayo EM, Anderson S, Yates JR, Emerson BM, Evans RM (2004) A methylation-mediator complex in hormone signaling. Genes Dev 18:144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF, Shechter D (2011) Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs. J Biol Chem 286:42221–42231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Migliori V et al (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19:136–144

    Article  CAS  PubMed  Google Scholar 

  25. Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S (2011) Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 36:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  CAS  PubMed  Google Scholar 

  27. Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011) RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem 286:1976–1986

    Article  CAS  PubMed  Google Scholar 

  28. Friesen WJ et al (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21:8289–8300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WAM, Cohen A, Lasonder E, Stunnenberg HG (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277:8243–8247

    Article  CAS  PubMed  Google Scholar 

  31. Wang YX, Hu WH, Yuan YQ (2018) Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J Med Chem 61:9429–9441

    Article  CAS  PubMed  Google Scholar 

  32. Frankel A, Yadav N, Lee JH, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277:3537–3543

    Article  CAS  PubMed  Google Scholar 

  33. Kleinschmidt MA, de Graaf P, van Teeffelen HAAM, Timmers HTM (2012) Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. Plos One 7:41446–41452

    Article  CAS  Google Scholar 

  34. Phalke S et al (2012) p53-independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res 40:9534–9542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stein C, Riedl S, Ruthnick D, Notzold RR, Bauer UM (2012) The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 40:9522–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshimatsu M et al (2011) Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer 128:562–573

    Article  CAS  PubMed  Google Scholar 

  37. Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X, Reinberg D, Lee MG (2012) Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 26:2749–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karkhanis V, Wang L, Tae S, Hu YJ, Imbalzano AN, Sif S (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase delta catalytic subunit gene, POLD1. J Biol Chem 287:29801–29814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Sayegh J, Daniel J, Clarke S, Bedford MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280:32890–32896

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez SJ, Dolivo DM, Dominko T (2017) PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol Lett 13:1983–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang YZ et al. (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 6:6428–6439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Najbauer J, Johnson BA, Young AL, Aswad DW (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268:10501–10509

    CAS  PubMed  Google Scholar 

  44. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19:3509–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm 5:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timm DE, Bowman V, Madsen R, Rauch C (2018) Cryo-electron microscopy structure of a human PRMT5:MEP50 complex. Plos One 13(3):01932205–0193218

    Article  CAS  Google Scholar 

  48. Cura V, Troffer-Charlier N, Wurtz JM, Bonnefond L, Cavarelli J (2014) Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. Acta Crystallogr Sect D-Biol Crystallogr 70:2401–2412

    Article  CAS  Google Scholar 

  49. Chen YY, Wang BQ, Lan XX, Zhou ZY, Wu XQ (2018) Increased protein arginine methyl transferase 7 expression is correlated with the occurrence and development of endometrial carcinoma. Int J Clin Exp Med 11:4883–4890

    Google Scholar 

  50. Hasegawa M, Toma-Fukai S, Kim JD, Fukamizu A, Shimizu T (2014) Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats. FEBS Lett 588:1942–1948

    Article  CAS  PubMed  Google Scholar 

  51. Debler EW, Jain K, Warmack RA, Feng Y, Clarke SG, Blobel G, Stavropoulos P (2016) A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proc Natl Acad Sci USA 113:2068–2073

    Article  CAS  PubMed  Google Scholar 

  52. Wang CY et al (2014) structural determinants for the strict monomethylation activity by trypanosoma brucei protein arginine methyltransferase 7. Structure 22:756–768

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cura V et al (2017) Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 284:77–96

    Article  CAS  PubMed  Google Scholar 

  55. Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26:4391–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianferani S, Cavarelli J (2015) Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol 191:175–183

    Article  CAS  PubMed  Google Scholar 

  57. Wang C et al (2014) Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. PLoS One 9:e87267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu H et al (2016) Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 473:3049–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng Y, Frazier M, Lu FL, Cao XF, Redinbo MR (2011) Crystal structure of the plant epigenetic protein arginine methyltransferase 10. J Mol Biol 414:106–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol 7:1165–1171

    Article  CAS  PubMed  Google Scholar 

  61. Antonysamy S et al (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109:17960–17965

    Article  PubMed  Google Scholar 

  62. Toma-Fukai S et al (2016) Novel helical assembly in arginine methyltransferase 8. J Mol Biol 428:1197–1208

    Article  CAS  PubMed  Google Scholar 

  63. Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271:15034–15044

    Article  CAS  PubMed  Google Scholar 

  64. Lee WC et al (2015) Protein arginine methyltransferase 8: tetrameric structure and protein substrate specificity. Biochemistry 54:7514–7523

    Article  CAS  PubMed  Google Scholar 

  65. Feng Y, Xie N, Jin M, Stahley MR, Stivers JT, Zheng YG (2011) A transient kinetic analysis of PRMT1 catalysis. Biochemistry 50:7033–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klug A (1999) Zinc finger peptides for the regulation of gene expression. J Mol Biol 293:215–218

    Article  CAS  PubMed  Google Scholar 

  67. Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  68. Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94–98

    Article  CAS  PubMed  Google Scholar 

  69. Matthews JM, Sunde M (2002) Zinc fingers–folds for many occasions. IUBMB Life 54:351–355

    Article  CAS  PubMed  Google Scholar 

  70. Swiercz R, Person MD, Bedford MT (2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem J 386:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frankel A, Clarke S (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. conferral of substrate specificity by a zinc-finger domain. J Biol Chem 275:32974–32982

    Article  CAS  PubMed  Google Scholar 

  72. Blomberg N, Baraldi E, Nilges M, Saraste M (1999) The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci 24:441–445

    Article  CAS  PubMed  Google Scholar 

  73. Ball LJ, Jarchau T, Oschkinat H, Walter U (2002) EVH1 domains: structure, function and interactions. FEBS Lett 513:45–52

    Article  CAS  PubMed  Google Scholar 

  74. Lemmon MA, Ferguson KM, Abrams CS (2002) Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513:71–76

    Article  CAS  PubMed  Google Scholar 

  75. Gervais V et al (2004) TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol 11:616–622

    Article  CAS  PubMed  Google Scholar 

  76. She M, Decker CJ, Sundramurthy K, Liu Y, Chen N, Parker R, Song H (2004) Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat Struct Mol Biol 11:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 74:81–93

    Article  CAS  Google Scholar 

  78. Shishkova E, Zeng H, Liu F, Kwiecien NW, Hebert AS, Coon JJ, Xu W (2017) Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun 8:15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berberich H et al (2017) Identification and in silico structural analysis of Gallus gallus protein arginine methyltransferase 4 (PRMT4). FEBS Open Biol 7:1909–1923

    Article  CAS  Google Scholar 

  80. Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282:36444–36453

    Article  CAS  PubMed  Google Scholar 

  81. Antonysamy S et al (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109:17960–17965

    Article  PubMed  Google Scholar 

  82. Ho MC et al. (2013) Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. Plos One 8(2):57008–57023

    Article  CAS  Google Scholar 

  83. Sun LT, Wang MZ, Lv ZY, Yang N, Liu YF, Bao SL, Gong WM, Xu RM (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci USA 108:20538–20543

    Article  PubMed  Google Scholar 

  84. Yang YZ, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50

    Article  CAS  PubMed  Google Scholar 

  85. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115:5413–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morales Y, Caceres T, May K, Hevel JM (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590:138–152

    Article  CAS  PubMed  Google Scholar 

  87. Yue WW, Hassler M, Roe SM, Thompson-Vale V, Pearl LH (2007) Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J 26:4402–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feng Q, He B, Jung SY, Song YC, Qin J, Tsai SY, Tsai MJ, O’Malley BW (2009) Biochemical control of CARM1 enzymatic activity by phosphorylation. J Biol Chem 284:36167–36174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Obianyo O, Osborne TC, Thompson PR (2008) Kinetic mechanism of protein arginine methyltransferase 1. Biochemistry 47:10420–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu H, Luo C, Zheng YG (2016) Transient kinetics define a complete kinetic model for protein arginine methyltransferase 1. J Biol Chem 291:26722–26738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fulton MD, Brown T, Zheng YG (2018) Mechanisms and inhibitors of histone arginine methylation. Chem Rec 18:1792–1807

    Article  CAS  PubMed  Google Scholar 

  92. Bottiglieri T (1997) Ademetionine (S-adenosylmethionine) neuropharmacology: implications for drug therapies in psychiatric and neurological disorders. Expert Opin Investig Drugs 6:417–426

    Article  CAS  PubMed  Google Scholar 

  93. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  CAS  PubMed  Google Scholar 

  95. Rust HL, Zurita-Lopez CI, Clarke S, Thompson PR (2011) Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1. Biochemistry 50:3332–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gana R, Rao S, Huang H, Wu C, Vasudevan S (2013) Structural and functional studies of S-adenosyl-l-methionine binding proteins: a ligand-centric approach. BMC Struct Biol 13:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mavrakis KJ et al (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351:1208–1213

    Article  CAS  PubMed  Google Scholar 

  98. Lee DY, Ianculescu I, Purcell D, Zhang X, Cheng X, Stallcup MR (2007) Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol Endocrinol 21:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pesiridis GS, Diamond E, Van Duyne GD (2009) Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 284:21347–21359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jain K, Jin CY, Clarke SG (2017) Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci USA 114:10101–10106

    Article  CAS  PubMed  Google Scholar 

  101. Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U, Shechter D (2015) Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. J Biol Chem 290:9674–9689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu F et al (2011) JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng Y et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng Y, Hadjikyriacou A, Clarke SG (2014) Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. J Biol Chem 289:32604–32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kolbel K et al (2012) Peptide backbone conformation affects the substrate preference of protein arginine methyltransferase I. Biochemistry 51:5463–5475

    Article  CAS  PubMed  Google Scholar 

  106. Gui S, Wooderchak WL, Daly MP, Porter PJ, Johnson SJ, Hevel JM (2011) Investigation of the molecular origins of protein-arginine methyltransferase I (PRMT1) product specificity reveals a role for two conserved methionine residues. J Biol Chem 286:29118–29126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu H et al (2016) Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 473:3049–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jain K, Warmack RA, Debler EW, Hadjikyriacou A, Stavropoulos P, Clarke SG (2016) Protein arginine methyltransferase product specificity is mediated by distinct active-site architectures. J Biol Chem 291:18299–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Collins RE et al (2005) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280:5563–5570

    Article  CAS  PubMed  Google Scholar 

  111. Takahashi YH, Lee JS, Swanson SK, Saraf A, Florens L, Washburn MP, Trievel RC, Shilatifard A (2009) Regulation of H3K4 trimethylation via Cps40 (Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr switch by the catalytic domain of Set1. Mol Cell Biol 29:3478–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hu H, Qian K, Ho MC, Zheng YG (2016) Small molecule inhibitors of protein arginine methyltransferases. Expert Opin Investig Drugs 25:335–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Poulard C, Corbo L, Le Romancer M (2016) Protein arginine methylation/demethylation and cancer. Oncotarget 7:67532–67550

    Article  PubMed  PubMed Central  Google Scholar 

  114. Luo M (2015) Inhibitors of protein methyltransferases as chemical tools. Epigenomics 7:1327–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaniskan HU, Konze KD, Jin J (2015) Selective inhibitors of protein methyltransferases. J Med Chem 58:1596–1629

    Article  CAS  PubMed  Google Scholar 

  116. Qian K, Zheng YG (2016) Discovery and development of small molecule epigenetic drugs. Chap 8, Current development of protein arginine methyltransferase inhibitors. Epi-informatics: discovery and development of small molecule epigenetic drugs and probes, pp 231–256

  117. Bonday ZQ et al (2018) LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 9:612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mitchell LH et al (2015) Aryl pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. Acs Med Chem Lett 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Halby L et al. (2018) Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philos Trans R Soc Lond B Biol Sci 373:1748–1762

    Article  CAS  Google Scholar 

  120. Yan L et al (2014) Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 57:2611–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang J, Qian K, Yan C, He M, Jassim BA, Ivanov I, Zheng YG (2017) Discovery of decamidine as a new and potent PRMT1 inhibitor. Medchemcomm 8:440–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chan-Penebre E et al (2015) A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11:432

    Article  CAS  PubMed  Google Scholar 

  123. Siarheyeva A et al (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20:1425–1435

    Article  CAS  PubMed  Google Scholar 

  124. Kaniskan HU et al (2018) Discovery of potent and selective allosteric inhibitors of protein arginine methyltransferase 3 (PRMT3). J Med Chem 61:1204–1217

    Article  CAS  PubMed  Google Scholar 

  125. Kaniskan HU et al (2015) A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angewandte Chemie-Int Edit 54:5166–5170

    Article  CAS  Google Scholar 

  126. Liu F et al (2013) Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J Med Chem 56:2110–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.K.T. was supported by Taiwan Protein Project (Grant no. AS-KPQ-105-TPP). Y.G.Z. was supported by NIH Grant R01GM126154. M.C.H. was supported by the Academia Sinica and Ministry of Science and Technology (MOST 107-2311-B-001-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Chiao Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewary, S.K., Zheng, Y.G. & Ho, MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci. 76, 2917–2932 (2019). https://doi.org/10.1007/s00018-019-03145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03145-x

Keywords

Navigation