Skip to main content

Advertisement

Log in

Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are heterogeneous likely consisting of subpopulations with various therapeutic potentials. Here we attempted to acquire a subset of MSCs with enhanced effect in wound healing. We found that human placental MSCs expressing platelet-derived growth factor (PDGF) receptor (PDGFR)-β exhibited greater proliferation rates and generated more colony-forming unit-fibroblast (CFU-F), compared to PDGFR-β MSCs. Notably, PDGFR-β+ MSCs expressed higher levels of pro-angiogenic factors such as Ang1, Ang2, VEGF, bFGF and PDGF. When 106 GFP-expressing MSCs were topically applied into excisional wounds in mice, PDGFR-β+ MSCs actively incorporated into the wound tissue, resulting in enhanced engraftment (3.92 ± 0.31 × 105 remained in wound by 7 days) and accelerated wound closure; meanwhile, PDGFR-β MSCs tended to remain on the top of the wound bed with significantly fewer cells (2.46 ± 0.26 × 105) engrafted into the wound, suggesting enhanced chemotactic migration and engraftment of PDGFR-β+ MSCs into the wound. Real-Time PCR and immunostain analyses revealed that the expression of PDGF-B was upregulated after wounding; transwell migration assay showed that PDGFR-β+ MSCs migrated eightfold more than PDGFR-β MSCs toward PDGF-BB. Intriguingly, PDGFR-β+ MSC-treated wounds showed significantly enhanced angiogenesis compared to PDGFR-β MSC- or vehicle-treated wounds. Thus, our results indicate that PDGFR-β identifies a subset of MSCs with enhanced chemotactic migration to wound injury and effect in promoting angiogenesis and wound healing, implying a greater therapeutic potential for certain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22. doi:10.1016/j.stem.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117. doi:10.1146/annurev-bioeng-070909-105309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mo M, Wang S, Zhou Y et al (2016) Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 73(17):3311–3321. doi:10.1007/s00018-016-2229-7

    Article  CAS  PubMed  Google Scholar 

  4. Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113(9):2806–2812. doi:10.1002/jcb.24166

    Article  CAS  PubMed  Google Scholar 

  5. Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    CAS  PubMed  Google Scholar 

  6. Rajkumar VS, Shiwen X, Bostrom M et al (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169(6):2254–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tokunaga A, Oya T, Ishii Y et al (2008) PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J Bone Miner Res 23(9):1519–1528. doi:10.1359/Jbmr.080409

    Article  CAS  PubMed  Google Scholar 

  8. Lin RZ, Moreno-Luna R, Li D et al (2014) Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc Natl Acad Sci USA 111(28):10137–10142. doi:10.1073/pnas.1405388111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743. doi:10.1016/S0140-6736(05)67700-8

    Article  PubMed  Google Scholar 

  10. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. doi:10.1056/NEJM199909023411006

    Article  CAS  PubMed  Google Scholar 

  11. Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25(1):73–78. doi:10.1016/j.clindermatol.2006.10.002

    Article  PubMed  Google Scholar 

  12. Otero-Vinas M, Falanga V (2016) Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy. Adv Wound Care 5(4):149–163. doi:10.1089/wound.2015.0627

    Article  Google Scholar 

  13. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100(5):979–984. doi:10.1189/jlb.4MR0316-102R

    Article  CAS  PubMed  Google Scholar 

  14. Wu Y, Chen L, Scott PG et al (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659. doi:10.1634/stemcells.2007-0226

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Zhao RC, Tredget EE (2010) Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 28(5):905–915. doi:10.1002/stem.420

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li M, Zhao Y, Hao H et al (2015) Mesenchymal stem cell-based therapy for nonhealing wounds: today and tomorrow. Wound Repair Regeneration 23(4):465–482. doi:10.1111/wrr.12304

    Article  PubMed  Google Scholar 

  17. Chen L, Tredget EE, Wu PY et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886. doi:10.1371/journal.pone.0001886

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Z, Liu C, Xie Z et al (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6(6):e20526. doi:10.1371/journal.pone.0020526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang S, Guo L, Ge J et al (2015) Excess integrins cause lung entrapment of mesenchymal stem cells. Stem Cells 33(11):3315–3326. doi:10.1002/stem.2087

    Article  CAS  PubMed  Google Scholar 

  20. Guo L, Zhou Y, Wang S et al (2014) Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 18(10):2009–2019. doi:10.1111/jcmm.12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Ge J, Tredget EE et al (2013) The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc 8(2):302–309. doi:10.1038/nprot.2013.002

    Article  CAS  PubMed  Google Scholar 

  23. Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041. doi:10.1634/stemcells.2005-0319

    Article  CAS  PubMed  Google Scholar 

  24. Lv FJ, Tuan RS, Cheung KM et al (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419. doi:10.1002/stem.1681

    Article  CAS  PubMed  Google Scholar 

  25. Chandrakanthan V, Yeola A, Kwan JC et al (2016) PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci USA 113(16):E2306–E2315. doi:10.1073/pnas.1518244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Cao N, Huang Y et al (2016) Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18(3):368–381. doi:10.1016/j.stem.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Ball SG, Shuttleworth A, Kielty CM (2012) Inhibition of platelet-derived growth factor receptor signaling regulates Oct4 and Nanog expression, cell shape, and mesenchymal stem cell potency. Stem Cells 30(3):548–560. doi:10.1002/stem.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hung SC, Pochampally RR, Chen SC et al (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370. doi:10.1634/stemcells.2006-0686

    Article  CAS  PubMed  Google Scholar 

  29. Tao H, Han Z, Han ZC et al (2016) Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int 2016:1314709. doi:10.1155/2016/1314709

    Article  PubMed  PubMed Central  Google Scholar 

  30. Laschober GT, Brunauer R, Jamnig A et al (2011) Age-specific changes of mesenchymal stem cells are paralleled by upregulation of CD106 expression as a response to an inflammatory environment. Rejuvenation Res 14(2):119–131. doi:10.1089/rej.2010.1077

    Article  CAS  PubMed  Google Scholar 

  31. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegeneration 5:32. doi:10.1186/1750-1326-5-32

    Article  Google Scholar 

  32. Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8(1):243–250. doi:10.1007/s12015-011-9293-z

    Article  CAS  PubMed  Google Scholar 

  33. Guo L, Ge J, Zhou Y et al (2014) Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev 23(9):978–989. doi:10.1089/scd.2013.0338

    Article  CAS  PubMed  Google Scholar 

  34. Baxter MA, Wynn RF, Jowitt SN et al (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682. doi:10.1634/stemcells.22-5-675

    Article  CAS  PubMed  Google Scholar 

  35. Krampera M, Pasini A, Rigo A et al (2005) HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood 106(1):59–66. doi:10.1182/blood-2004-09-3645

    Article  CAS  PubMed  Google Scholar 

  36. Fiedler J, Etzel N, Brenner RE (2004) To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem 93(5):990–998. doi:10.1002/jcb.20219

    Article  CAS  PubMed  Google Scholar 

  37. Ball SG, Shuttleworth CA, Kielty CM (2007) Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 177(3):489–500. doi:10.1083/jcb.200608093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boomsma RA, Geenen DL (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 7(4):e35685. doi:10.1371/journal.pone.0035685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nuschke A (2014) Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 10(1):29–37. doi:10.4161/org.27405

    Article  PubMed  Google Scholar 

  40. Gong Z, Calkins G, Cheng EC et al (2009) Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 15(2):319–330. doi:10.1089/ten.tea.2008.0161

    Article  CAS  PubMed  Google Scholar 

  41. Tamama K, Sen CK, Wells A (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 17(5):897–908. doi:10.1089/scd.2007.0155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank Bing Yu for assistance in confocal analysis. This work was supported by grants from Natural Science Foundation of China (Nos. 31371404, 31571429), Natural Science Foundation of Guangdong (2015A030311041), and Shenzhen Science and Technology Innovation Committee (JCY20160301150838144).

Author information

Authors and Affiliations

Authors

Contributions

SW: performed experiments and data analysis; SS, MM, JW, BS: performed experiments; LY: provided materials and designed experiments; XF, ET: designed experiments; YW: designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Yaojiong Wu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Mo, M., Wang, J. et al. Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cell. Mol. Life Sci. 75, 547–561 (2018). https://doi.org/10.1007/s00018-017-2641-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2641-7

Keywords

Navigation