Skip to main content

Advertisement

Log in

RNA-binding protein HuR enhances mineralocorticoid signaling in renal KC3AC1 cells under hypotonicity

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mineralocorticoid receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron. Herein, we decipher mechanisms by which hypotonicity increases MR expression in renal principal cells. We identify HuR (human antigen R), an mRNA-stabilizing protein, as an important posttranscriptional regulator of MR expression. Hypotonicity triggers a rapid and reversible nuclear export of HuR in renal KC3AC1 cells, as quantified by high-throughput microscopy. We also identify a key hairpin motif in the 3′-untranslated region of MR transcript, pivotal for the interaction with HuR and its stabilizing function. Next, we show that hypotonicity increases MR recruitment onto Sgk1 promoter, a well-known MR target gene, thereby enhancing aldosterone responsiveness. Our data shed new light on the crucial role of HuR as a stabilizing factor for the MR transcript and provide evidence for a short autoregulatory loop in which expression of a nuclear receptor transcriptionally regulating water and sodium balance is controlled by osmotic tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MR:

Mineralocorticoid receptor

HuR:

Human antigen R

Sgk1:

Serum and glucocorticoid-regulated kinase 1

Tis11b:

Tetradecanoyl phorbol acetate inducible sequence 11b

RBP:

RNA-binding protein

3′-UTR:

3′-Untranslated region

ELAVL1:

Embryonic lethal, abnormal vision, Drosophila homolog-like 1

EGF:

Epidermal growth factor

T3:

Triiodothyronine

DCC:

Dextran charcoal-coated

RNP-IP:

Ribonucleoprotein immunoprecipitation

Luc:

Luciferase

DNA-ChiP:

DNA-chromatin immunoprecipitation

Iso:

Isotonicity

Hypo:

Hypotonicity

HTM:

High-throughput microscopy

LMB:

Leptomycin B

PKC:

Protein kinase C

miRNA:

MicroRNA

PIS:

Preimmune serum

Ucp1:

Uncoupling protein 1

MTA:

Metastasis-associate 1

PTMA:

Prothymosin

References

  1. Viengchareun S, Le Menuet D, Martinerie L et al (2007) The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal 5:e012. doi:10.1621/nrs.05012

    PubMed  PubMed Central  Google Scholar 

  2. Quinkler M, Zehnder D, Eardley KS et al (2005) Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation 112:1435–1443. doi:10.1161/CIRCULATIONAHA.105.539122

    Article  CAS  PubMed  Google Scholar 

  3. Shibata S, Nagase M, Yoshida S et al (2008) Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 14:1370–1376. doi:10.1038/nm.1879

    Article  CAS  PubMed  Google Scholar 

  4. Martinerie L, Viengchareun S, Delezoide A-L et al (2009) Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates. Endocrinology 150:4414–4424. doi:10.1210/en.2008-1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geller DS, Zhang J, Zennaro M-C et al (2006) Autosomal dominant pseudohypoaldosteronism type 1: mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. J Am Soc Nephrol JASN 17:1429–1436. doi:10.1681/ASN.2005111188

    Article  CAS  PubMed  Google Scholar 

  6. Doucet A, Katz AI (1981) Mineralcorticoid receptors along the nephron: [3H]aldosterone binding in rabbit tubules. Am J Physiol 241:F605–F611

    CAS  PubMed  Google Scholar 

  7. Fenton RA, Knepper MA (2007) Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 87:1083–1112. doi:10.1152/physrev.00053.2006

    Article  CAS  PubMed  Google Scholar 

  8. Viengchareun S, Kamenicky P, Teixeira M et al (2009) Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line. Mol Endocrinol Baltim Md 23:1948–1962. doi:10.1210/me.2009-0095

    Article  CAS  Google Scholar 

  9. Viengchareun S, Lema I, Lamribet K et al (2014) Hypertonicity compromises renal mineralocorticoid receptor signaling through Tis11b-mediated post-transcriptional control. J Am Soc Nephrol JASN 25:2213–2221. doi:10.1681/ASN.2013091023

    Article  CAS  PubMed  Google Scholar 

  10. Hinman MN, Lou H (2008) Diverse molecular functions of Hu proteins. Cell Mol Life Sci CMLS 65:3168–3181. doi:10.1007/s00018-008-8252-6

    Article  CAS  PubMed  Google Scholar 

  11. Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96:5–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doller A, Pfeilschifter J, Eberhardt W (2008) Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 20:2165–2173. doi:10.1016/j.cellsig.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Abdelmohsen K, Lal A, Kim HH, Gorospe M (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle Georget Tex 6:1288–1292

    Article  CAS  Google Scholar 

  14. Katsanou V, Milatos S, Yiakouvaki A et al (2009) The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol Cell Biol 29:2762–2776. doi:10.1128/MCB.01393-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chamboredon S, Ciais D, Desroches-Castan A et al (2011) Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 22:3366–3378. doi:10.1091/mbc.E10-07-0617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Billan F, Khan JA, Lamribet K et al (2015) Cistrome of the aldosterone-activated mineralocorticoid receptor in human renal cells. FASEB J Off Publ Fed Am Soc Exp Biol 29:3977–3989. doi:10.1096/fj.15-274266

    Google Scholar 

  17. Amazit L, Roseau A, Khan JA et al (2011) Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Mol Endocrinol Baltim Md 25:394–408. doi:10.1210/me.2010-0458

    Article  CAS  Google Scholar 

  18. Amazit L, Le Billan F, Kolkhof P et al (2015) Finerenone impedes aldosterone-dependent nuclear import of the mineralocorticoid receptor and prevents genomic recruitment of steroid receptor coactivator-1. J Biol Chem 290:21876–21889. doi:10.1074/jbc.M115.657957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma WJ, Cheng S, Campbell C et al (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271:8144–8151

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Bowden GT (2008) UVB irradiation regulates Cox-2 mRNA stability through AMPK and HuR in human keratinocytes. Mol Carcinog 47:974–983. doi:10.1002/mc.20450

    Article  CAS  PubMed  Google Scholar 

  21. Cherradi N, Lejczak C, Desroches-Castan A, Feige J-J (2006) Antagonistic functions of tetradecanoyl phorbol acetate-inducible-sequence 11b and HuR in the hormonal regulation of vascular endothelial growth factor messenger ribonucleic acid stability by adrenocorticotropin. Mol Endocrinol Baltim Md 20:916–930. doi:10.1210/me.2005-0121

    Article  CAS  Google Scholar 

  22. López de Silanes I, Zhan M, Lal A et al (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 101:2987–2992. doi:10.1073/pnas.0306453101

    Article  PubMed  Google Scholar 

  23. Lebedeva S, Jens M, Theil K et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352. doi:10.1016/j.molcel.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  24. Mukherjee N, Corcoran DL, Nusbaum JD et al (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339. doi:10.1016/j.molcel.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soler DM, Ghosh A, Chen F, Shneider BL (2014) A single element in the 3′UTR of the apical sodium-dependent bile acid transporter controls both stabilization and destabilization of mRNA. Biochem J 462:547–553. doi:10.1042/BJ20140070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Komnenov D, Scipione CA, Bazzi ZA et al (2015) Pro-inflammatory cytokines reduce human TAFI expression via tristetraprolin-mediated mRNA destabilisation and decreased binding of HuR. Thromb Haemost 114:337–349. doi:10.1160/TH14-08-0653

    Article  CAS  PubMed  Google Scholar 

  28. Eberhardt W, Badawi A, Biyanee A, Pfeilschifter J (2016) Cytoskeleton-dependent transport as a potential target for interfering with post-transcriptional HuR mRNA regulons. Front Pharmacol 7:251. doi:10.3389/fphar.2016.00251

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ge J, Chang N, Zhao Z et al (2016) Essential roles of RNA-binding protein HuR in activation of hepatic stellate cells induced by transforming growth factor-β1. Sci Rep 6:22141. doi:10.1038/srep22141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95:15293–15298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doller A, Gauer S, Sobkowiak E et al (2009) Angiotensin II induces renal plasminogen activator inhibitor-1 and cyclooxygenase-2 expression post-transcriptionally via activation of the mRNA-stabilizing factor human-antigen R. Am J Pathol 174:1252–1263. doi:10.2353/ajpath.2009.080652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levy NS, Chung S, Furneaux H, Levy AP (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–6423

    Article  CAS  PubMed  Google Scholar 

  33. Mochizuki H, Murphy CJ, Brandt JD et al (2012) Altered stability of mRNAs associated with glaucoma progression in human trabecular meshwork cells following oxidative stress. Invest Ophthalmol Vis Sci 53:1734–1741. doi:10.1167/iovs.12-7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. St Laurent G, Shtokalo D, Heydarian M et al (2012) Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics MGG 287:867–879. doi:10.1007/s00438-012-0722-8

    Article  CAS  PubMed  Google Scholar 

  35. Barker A, Epis MR, Porter CJ et al (2012) Sequence requirements for RNA binding by HuR and AUF1. J Biochem (Tokyo) 151:423–437. doi:10.1093/jb/mvs010

    Article  CAS  Google Scholar 

  36. Srikantan S, Tominaga K, Gorospe M (2012) Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci 13:372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He F, Peng F, Xia X et al (2014) MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57:1726–1736. doi:10.1007/s00125-014-3282-0

    Article  CAS  PubMed  Google Scholar 

  38. Taruno A, Niisato N, Marunaka Y (2008) Intracellular calcium plays a role as the second messenger of hypotonic stress in gene regulation of SGK1 and ENaC in renal epithelial A6 cells. Am J Physiol Renal Physiol 294:F177–F186. doi:10.1152/ajprenal.00250.2007

    Article  CAS  PubMed  Google Scholar 

  39. Bockenhauer D, Bichet DG (2015) Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 11:576–588. doi:10.1038/nrneph.2015.89

    Article  CAS  PubMed  Google Scholar 

  40. Shang J, Wan Q, Wang X et al (2015) Identification of NOD2 as a novel target of RNA-binding protein HuR: evidence form NAPDH oxidase-mediated HuR signaling in diabetic nephropathy. Free Radic Biol Med 79:217–227. doi:10.1016/freeradbiomed.2014.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Julie Sappa for English editing.

Author information

Authors and Affiliations

Authors

Contributions

IL, AB, JF, NC, ML, and SV designed the study. IL, LA, KL, SV, NC, and ML performed the study. LA, IL, KL, AB, NC, ML, and SV analyzed the data, and IL, LA, NC, ML, and SV wrote the paper.

Corresponding authors

Correspondence to Marc Lombès, Nadia Cherradi or Say Viengchareun.

Ethics declarations

Funding

This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale, the Université Paris-Sud and Agence Nationale de la Recherche (Grant 11-BSV1-028-01). Ingrid Lema held a fellowship from the Cardiovasculaire-Obésité-Rein-Diabète-Domaine d’Intérêt Majeur (Région Ile-de-France) and HAC Pharma & SFE (Société Française d’Endocrinologie).

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2275 kb)

Supplementary material 2 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lema, I., Amazit, L., Lamribet, K. et al. RNA-binding protein HuR enhances mineralocorticoid signaling in renal KC3AC1 cells under hypotonicity. Cell. Mol. Life Sci. 74, 4587–4597 (2017). https://doi.org/10.1007/s00018-017-2594-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2594-x

Keywords

Navigation