Skip to main content

Advertisement

Log in

GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It is well known that adipose tissue has a critical role in the development of obesity and metabolic diseases and that adipose tissue acts as an endocrine organ to regulate lipid and glucose metabolism. Accumulating in the adipose tissue, fatty acids serve as a primary source of essential nutrients and act on intracellular and cell surface receptors to regulate biological events. G protein-coupled receptor 120 (GPR120) represents a promising target for the treatment of obesity-related metabolic disorders for its involvement in the regulation of adipogenesis, inflammation, glucose uptake, and insulin resistance. In this review, we summarize recent studies and advances regarding the systemic role of GPR120 in adipose tissue, including both white and brown adipocytes. We offer a new perspective by comparing the different roles in a variety of homeostatic processes from adipogenic development to adipocyte metabolism, and we also discuss the effects of natural and synthetic agonists that may be potential agents for the treatment of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hajer GR, van Haeften TW, Visseren FLJ (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29(24):2959–2971

    Article  CAS  PubMed  Google Scholar 

  2. Cannon B, Nedergaard J (2004) Brown adipose tissue: Function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  3. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2):20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    Article  CAS  PubMed  Google Scholar 

  5. Harwood HJ (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75

    Article  CAS  PubMed  Google Scholar 

  6. Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 64(5–6):893–901

    Article  CAS  PubMed  Google Scholar 

  7. Lee JH et al (2009) Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat Rev Cardiol 6(12):753–758

    Article  CAS  PubMed  Google Scholar 

  8. Scorletti E, Byrne CD (2013) Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annual Rev Nutr 33: 231–248.

    Article  CAS  Google Scholar 

  9. Hirasawa A, Tsujimoto G (2005) Ligand identification and functional analysis for orphan GPCR GPR120. Yakugaku Zasshi J Pharm Soc Jpn 125: 122–123

    Google Scholar 

  10. Ichimura A et al (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389): 350–354

    Article  CAS  PubMed  Google Scholar 

  11. Oh DY et al (2010) GPR120 Is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gotoh C et al (2007) The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun 354(2):591–597

    Article  CAS  PubMed  Google Scholar 

  13. Im DS (2016) Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur J Pharmacol 785:36–43

    Article  CAS  PubMed  Google Scholar 

  14. Moniri NH (2016) Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol 110:1–15

    Article  PubMed  Google Scholar 

  15. Ulven T, Christiansen E (2015) Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annual Rev Nutr 35: 239–263

    Article  CAS  Google Scholar 

  16. Zhang D, Leung PS (2014) Potential roles of GPR120 and its agonists in the management of diabetes. Drug Design Dev Therapy 8: 1013–1027

    Google Scholar 

  17. Hirasawa A et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11(1):90–94

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka T et al (2008) Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):515–522

    Article  CAS  PubMed  Google Scholar 

  19. Moore K et al (2009) Cloning, expression, and pharmacological characterization of the GPR120 free fatty acid receptor from cynomolgus monkey: comparison with human GPR120 splice variants. Comp Biochem Physiol B-Biochem Mol Biol 154(4):419–426

    Article  PubMed  Google Scholar 

  20. Watson SJ, A.J.H. Brown, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81(5):631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song TX et al (2015) Cloning and characterization of spliced variants of the porcine G protein coupled receptor 120. Biomed Res Int 2015:1–10

    CAS  Google Scholar 

  22. Tanaka T et al (2008) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):523–527

    Article  CAS  PubMed  Google Scholar 

  23. Otto TC, Lane MD (2005) Adipose development: From stem cell to adipocyte. Crit Rev Biochem Mol Biol 40(4):229–242

    Article  CAS  PubMed  Google Scholar 

  24. Song TX, et al. (2016) GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol Cell Endocrinol 434(C): 1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Ichimura A, Hara T, Hirasawa A (2014) Regulation of energy homeostasis via GPR120. Front Endocrinol 5:111

  26. Quesada-Lopez T et al (2016) The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun 7:13479

  27. Hudson BD et al (2013) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84(5):710–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao B et al (2015) GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci Rep 5:14080

  29. Kim J et al (2016) Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem 291(39):20551–20562

    Article  CAS  PubMed  Google Scholar 

  30. Gim HJ et al (2013) Design and synthesis of alkoxyindolyl-3-acetic acid analogs as peroxisome proliferator-activated receptor-gamma/delta agonists. Bioorganic Med Chem Lett 23(2):513–517

    Article  CAS  Google Scholar 

  31. Suzuki T et al (2008) Identification of G protein-coupled receptor 120-selective agonists derived from PPAR gamma agonists. J Med Chem 51(23):7640–7644

    Article  CAS  PubMed  Google Scholar 

  32. Hudson BD et al (2014) The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 289(29):20345–20358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bost F et al (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87(1):51–56

    Article  CAS  PubMed  Google Scholar 

  34. Prusty D et al (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPAR gamma) and C/EBP alpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 277(48):46226–46232

    Article  CAS  PubMed  Google Scholar 

  35. Neal JW, Clipstone NA (2002) Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3-L1 cells. J Biol Chem 277(51):49776–49781

    Article  CAS  PubMed  Google Scholar 

  36. Shi H et al (2000) Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics 3(2):75–82

    CAS  PubMed  Google Scholar 

  37. Strissel KJ et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56(12):2910–2918

    Article  CAS  PubMed  Google Scholar 

  38. Ouchi N et al (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weisberg SP et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weisberg S et al (2003) Obesity leads to macrophage accumulation in adipose tissue. Obes Res 11:A6–A7

    Google Scholar 

  42. Xu HY et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harkins JM et al (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6 J and ob/ob mice. J Nutr 134(10):2673–2677

    CAS  PubMed  Google Scholar 

  44. Oh DY et al (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20(8):942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu YQ et al (2014) The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A(2) via GPR120 receptor to produce prostaglandin E-2 and plays an anti-inflammatory role in macrophages. Immunology 143(1):81–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li XZ, Yu Y, Funk CD (2013) Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). Faseb J 27(12):4987–4997

    Article  CAS  PubMed  Google Scholar 

  47. Buysschaert M et al (2000) Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care 23(12):1816–1822

    Article  CAS  PubMed  Google Scholar 

  48. Li Y et al (2008) Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 57(4):817–827

    Article  CAS  PubMed  Google Scholar 

  49. Li Y et al (2013) Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem 288(14):9583–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  PubMed Central  Google Scholar 

  51. Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60(10):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vieira WA, Sadie-Van Gijsen H, Ferris WF (2016) Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages. CMLS Cell Mol Life Sci 73(19):3665–3676

    Article  CAS  PubMed  Google Scholar 

  53. Iyer A et al (2010) Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol 6(2):71–82

    Article  CAS  PubMed  Google Scholar 

  54. Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32:14–23

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Pacheco F et al (2016) The pro-/anti-inflammatory effects of different fatty acids on visceral adipocytes are partially mediated by GPR120. Eur J Nutr 1–10. doi:10.1007/s00394-016-1222-0

  56. Rodriguez-Pacheco F et al (2014) Effects of obesity/fatty acids on the expression of GPR120. Mol Nutr Food Res 58(9):1852–1860

    Article  CAS  PubMed  Google Scholar 

  57. Cornall LM et al (2011) Diet-induced Obesity up-regulates the abundance of GPR43 and GPR120 in a tissue specific manner. Cell Physiol Biochem 28(5):949–958

    Article  CAS  PubMed  Google Scholar 

  58. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93(1):1–21

    Article  CAS  PubMed  Google Scholar 

  59. Krishnan J et al (2012) Dietary obesity-associated Hif1 alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD(+) system. Genes Dev 26(3):259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun K et al (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 109(15):5874–5879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hasan AU et al. (2015) Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPAR gamma mediated pathways in 3T3-L1 adipocytes. Mol Cell Endocrinol 406(C):10–18.

    Article  CAS  PubMed  Google Scholar 

  62. Yore MM et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159(2):318–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimpukade B et al (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55(9):4511–4515

    Article  CAS  PubMed  Google Scholar 

  64. Liu D et al (2012) G-protein coupled receptor 120 Is involved in glucose metabolism in fat cells. Cell Mol Biol 58:1757–1762

    Google Scholar 

  65. Chen K et al (2016) Transcription factor C/EBP beta promotes the transcription of the porcine GPR120 gene. J Mol Endocrinol 56(2):91–100

    Article  PubMed  Google Scholar 

  66. Kajimura S (2017) Adipose tissue in 2016: advances in the understanding of adipose tissue biology. Nat Rev Endocrinol 13(2):69–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Danforth E Jr (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 26(1):13

    Article  CAS  PubMed  Google Scholar 

  68. Cao HM et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Denis GV, Obin MS (2013) ‘Metabolically healthy obesity’: origins and implications. Mol Aspects Med 34(1):59–70

    Article  CAS  PubMed  Google Scholar 

  70. Kloting N et al (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299(3):E506–E515

    Article  PubMed  Google Scholar 

  71. Tang W et al (2011) Thiazolidinediones Regulate Adipose Lineage Dynamics. Cell Metab 14(1):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gustafson B et al (2013) Restricted adipogenesis in hypertrophic obesity the role of WISP2, WNT, and BMP4. Diabetes 62(9):2997–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rosell M et al (2014) Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306(8):E945–E964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Briscoe CP et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148(5):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galindo MM et al (2012) G protein-coupled receptors in human fat taste perception. Chem Senses 37(2):123–139

    Article  CAS  PubMed  Google Scholar 

  76. Mobraten K et al (2013) Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Disease 12(1):101

  77. Wu Q et al (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32(49):5541–5550

    Article  CAS  PubMed  Google Scholar 

  78. Cintra DE et al (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. Plos One 7(1):e30571

  79. Wellhauser L, Belsham DD (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J Neuroinflammation 11(1):60

  80. Oh DY, Walenta E (2014) Omega-3 fatty acids and FFAR4. Front Endocrinol 5(4):115

  81. Shenoy SK, Lefkowitz RJ (2011) beta-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Strachan RT et al (2014) Divergent transducer-specific molecular efficacies generate biased agonism at a G Protein-coupled receptor (GPCR). J Biol Chem 289(20):14211–14224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose excellent work we could not reference directly in this review due to limited text space. This study was jointly supported by the National Natural Science Foundation of China (Nos. 31472075 and 31402085); Hubei Provincial Creative Team Project of Agricultural Science and Technology (No. 2007-620); the Key Technology Research and Development Program of Hubei Province (Nos. 2014ABB014 and 2014ABC012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongkui Wei or Jian Peng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Yang, Y., Zhou, Y. et al. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell. Mol. Life Sci. 74, 2723–2733 (2017). https://doi.org/10.1007/s00018-017-2492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2492-2

Keywords

Navigation