Skip to main content

Advertisement

Log in

One protein, multiple pathologies: multifaceted involvement of amyloid β in neurodegenerative disorders of the brain and retina

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Accumulation of amyloid β (Aβ) and its aggregates in the ageing central nervous system is regarded synonymous to Alzheimer’s disease (AD) pathology. Despite unquestionable advances in mechanistic and diagnostic aspects of the disease understanding, the primary cause of Aβ accumulation as well as its in vivo roles remains elusive; nonetheless, the majority of the efforts to address pathological mechanisms for therapeutic development are focused towards moderating Aβ accumulation in the brain. More recently, Aβ deposition has been identified in the eye and is linked with distinct age-related diseases including age-related macular degeneration, glaucoma as well as AD. Awareness of the Aβ accumulation in these markedly different degenerative disorders has led to an increasing body of work exploring overlapping mechanisms, a prospective biomarker role for Aβ and the potential to use retina as a model for brain related neurodegenerative disorders. Here, we present an integrated view of current understanding of the retinal Aβ deposition discussing the accumulation mechanisms, anticipated impacts and outlining ameliorative approaches that can be extrapolated to the retina for potential therapeutic benefits. Further longitudinal investigations in humans and animal models will determine retinal Aβ association as a potential pathognomonic, diagnostic or prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AMD:

Age-related macular degeneration

Aβ:

Amyloid beta

RGC:

Retinal ganglion cell

APP:

Amyloid precursor protein

RNFL:

Retinal nerve fibre layer

PERG:

Pattern electroretinogram

VEP:

Visual evoked potential

OCT:

Optical coherence tomography

RPE:

Retinal pigment epithelium

BrM:

Bruch’s membrane

IOP:

Intra ocular pressure

BDNF:

Brain derived neurotrophic factor

CNTF:

Ciliary neurotrophic factor

GDNF:

Glial derived neurotrophic factor

Arc:

Activity regulated cytoskeleton-associated protein

BACE:

β Secretase

ACE:

Angiotensin converting enzyme

AGE:

Advanced glycation end product

VEGF:

Vascular endothelial growth factor

INL:

Inner nuclear layer

ROS:

Reactive oxygen species

ONH:

Optic nerve head

NSAID:

Non-steroidal anti-inflammatory drugs

HRT:

Hormone replacement therapy

LH:

Luteinizing hormone

GRH:

Gonadotrophin releasing hormone

SOD:

Superoxide dismutase

References

  1. Gupta VK et al (2016) Amyloid beta accumulation and Inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett 623:52–56

    Article  CAS  PubMed  Google Scholar 

  2. Gupta VB et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62:143–158

    Article  CAS  PubMed  Google Scholar 

  3. Iseri PK, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26:18–24

    Article  PubMed  Google Scholar 

  4. Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I (2012) Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 40:341–349

    Article  PubMed  Google Scholar 

  5. Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M, Graham S (2014) BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta 1842:1567–1578

    Article  CAS  PubMed  Google Scholar 

  6. Sivak JM (2013) The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci 54:871–880

    Article  PubMed  CAS  Google Scholar 

  7. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lista S, Garaci FG, Ewers M, Teipel S, Zetterberg H, Blennow K, Hampel H (2014) CSF Abeta1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement 10:381–392

    Article  PubMed  Google Scholar 

  9. Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, Dua P, Lukiw WJ (2015) Beta-amyloid precursor protein (betaAPP) processing in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol 52:533–544

    Article  CAS  PubMed  Google Scholar 

  10. Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247:1213–1221

    Article  CAS  PubMed  Google Scholar 

  11. Ding JD et al (2011) Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci USA 108:E279–E287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Almasieh M, Wilson AM, Morquette B, Vargas JLC, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181

    Article  CAS  PubMed  Google Scholar 

  13. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090

    Article  PubMed  Google Scholar 

  14. Woo SJ, Park KH, Ahn J, Choe JY, Jeong H, Han JW, Kim TH, Kim KW (2012) Cognitive impairment in age-related macular degeneration and geographic atrophy. Ophthalmology 119:2094–2101

    Article  PubMed  Google Scholar 

  15. Tamura H et al (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83

    Article  PubMed  Google Scholar 

  16. Keenan TD, Goldacre R, Goldacre MJ (2014) Associations between age-related macular degeneration, Alzheimer disease, and dementia: record linkage study of hospital admissions. JAMA Ophthalmol 132:63–68

    Article  PubMed  Google Scholar 

  17. Kessing LV, Lopez AG, Andersen PK, Kessing SV (2007) No increased risk of developing Alzheimer disease in patients with glaucoma. J Glaucoma 16:47–51

    Article  PubMed  Google Scholar 

  18. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu N, Rao X, Gao Y, Wang J, Xu F (2013) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712

    CAS  PubMed  Google Scholar 

  20. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217

    Article  CAS  PubMed  Google Scholar 

  21. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50:793–800

    Article  PubMed  Google Scholar 

  22. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bentley P, Driver J, Dolan RJ (2008) Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain 131:409–424

    Article  PubMed  Google Scholar 

  24. Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289

    Article  PubMed  Google Scholar 

  25. Jackson GR, Owsley C (2003) Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin 21:709–728

    Article  PubMed  Google Scholar 

  26. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 420:97–99

    Article  CAS  PubMed  Google Scholar 

  27. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867

    Article  CAS  PubMed  Google Scholar 

  28. McKee AC, Au R, Cabral HJ, Kowall NW, Seshadri S, Kubilus CA, Drake J, Wolf PA (2006) Visual association pathology in preclinical Alzheimer disease. J Neuropathol Exp Neurol 65:621–630

    Article  PubMed  Google Scholar 

  29. Moncaster JA et al (2010) Alzheimer’s disease amyloid-β links lens and brain pathology in Down syndrome. PLoS One 5:e10659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fotiou DF, Brozou CG, Haidich AB, Tsiptsios D, Nakou M, Kabitsi A, Giantselidis C, Fotiou F (2007) Pupil reaction to light in Alzheimer’s disease: evaluation of pupil size changes and mobility. Aging Clin Exp Res 19:364–371

    Article  PubMed  Google Scholar 

  31. Isas JM, Luibl V, Johnson LV, Kayed R, Wetzel R, Glabe CG, Langen R, Chen J (2010) Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci 51:1304–1310

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu C, Cao L, Yang S, Xu L, Liu P, Wang F, Xu D (2015) Subretinal injection of amyloid-beta peptide accelerates RPE cell senescence and retinal degeneration. Int J Mol Med 35:169–176

    CAS  PubMed  Google Scholar 

  33. Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malek G et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A 102:11900–11905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zlokovic BV (2013) Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 70:440–444

    Article  PubMed  PubMed Central  Google Scholar 

  36. Verghese PB et al (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci 110:E1807–E1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klaver CC, Ott A, Hofman A, Assink JJ, Breteler MM, de Jong PT (1999) Is age-related maculopathy associated with Alzheimer’s Disease? The Rotterdam Study. Am J Epidemiol 150:963–968

    Article  CAS  PubMed  Google Scholar 

  38. Kaarniranta K, Salminen A, Haapasalo A, Soininen H, Hiltunen M (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24:615–631

    CAS  PubMed  Google Scholar 

  39. Guo L et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kipfer-Kauer A, McKinnon SJ, Frueh BE, Goldblum D (2010) Distribution of amyloid precursor protein and amyloid-beta in ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res 35:828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldblum D, Kipfer-Kauer A, Sarra G-M, Wolf S, Frueh BE (2007) Distribution of amyloid precursor protein and amyloid-β immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest Ophthalmol Vis Sci 48:5085–5090

    Article  PubMed  Google Scholar 

  42. Janciauskiene S, Krakau T (2001) Alzheimer’s peptide: a possible link between glaucoma, exfoliation syndrome and Alzheimer’s disease. Acta Ophthalmol Scand 79:328–329

    Article  CAS  PubMed  Google Scholar 

  43. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H (2005) Vitreous fluid levels of β-amyloid(1–42) and tau in patients with retinal diseases. Jpn J Ophthalmol 49:106–108

    Article  CAS  PubMed  Google Scholar 

  44. Bayer AU, Ferrari F (2002) Severe progression of glaucomatous optic neuropathy in patients with Alzheimer’s disease. Eye (Lond) 16:209–212

    Article  CAS  Google Scholar 

  45. Trillaud-Doppia E, Paradis-Isler N, Boehm J (2016) A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation. Neurobiol Dis 91:94–104

    Article  CAS  PubMed  Google Scholar 

  46. Belaidi AA, Bush AI (2015) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. doi:10.1111/jnc.13425

  47. Avan A, Hoogenraad TU (2015) Zinc and copper in Alzheimer’s disease. J Alzheimers Dis 46:89–92

    Article  CAS  PubMed  Google Scholar 

  48. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lengyel I et al (2007) High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res 84:772–780

    Article  CAS  PubMed  Google Scholar 

  50. Age-Related Eye Disease Study 2 Research Group (2013) Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309:2005–2015

    Article  CAS  Google Scholar 

  51. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555

    Article  CAS  PubMed  Google Scholar 

  52. Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL (2004) Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci USA 101:13850–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802:2–10

    Article  CAS  PubMed  Google Scholar 

  54. Zhang K et al (2011) Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci USA 108:6241–6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci 27:2628–2635

    Article  CAS  PubMed  Google Scholar 

  56. Peng S et al (2009) Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 29:9321–9329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem 82:1058–1064

    Article  CAS  PubMed  Google Scholar 

  58. Lim YY et al (2015) APOE and BDNF polymorphisms moderate amyloid beta-related cognitive decline in preclinical Alzheimer’s disease. Mol Psychiatry 20:1322–1328

    Article  CAS  PubMed  Google Scholar 

  59. Echeverria V, Berman DE, Arancio O (2007) Oligomers of beta-amyloid peptide inhibit BDNF-induced arc expression in cultured cortical Neurons. Curr Alzheimer Res 4:518–521

    Article  CAS  PubMed  Google Scholar 

  60. Wong J, Higgins M, Halliday G, Garner B (2012) Amyloid beta selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer’s disease. Neuroscience 210:363–374

    Article  CAS  PubMed  Google Scholar 

  61. Cattaneo A, Capsoni S, Paoletti F (2008) Towards non invasive nerve growth factor therapies for Alzheimer’s disease. J Alzheimers Dis 15:255–283

    CAS  PubMed  Google Scholar 

  62. Lambiase A, Coassin M, Tirassa P, Mantelli F, Aloe L (2009) Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: a case report. Ann Ist Super Sanita 45:439–442

    PubMed  Google Scholar 

  63. Pease ME et al (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50:2194–2200

    Article  PubMed  Google Scholar 

  64. Garcia P et al (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30:7516–7527

    Article  CAS  PubMed  Google Scholar 

  65. Lebrun-Julien F, Morquette B, Douillette A, Saragovi HU, Di Polo A (2009) Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell Neurosci 40:410–420

    Article  CAS  PubMed  Google Scholar 

  66. Gupta VK, You Y, Klistorner A, Graham SL (2012) Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim Biophys Acta 1822:1643–1649

    Article  CAS  PubMed  Google Scholar 

  67. Jeronimo-Santos A et al (2015) Dysregulation of TrkB receptors and BDNF function by amyloid-beta peptide is mediated by calpain. Cereb Cortex 25:3107–3121

    Article  PubMed  Google Scholar 

  68. Fombonne J, Rabizadeh S, Banwait S, Mehlen P, Bredesen DE (2009) Selective vulnerability in Alzheimer’s disease: amyloid precursor protein and p75(NTR) interaction. Ann Neurol 65:294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87:181–194

    Article  CAS  PubMed  Google Scholar 

  70. Rogers RS, Dharsee M, Ackloo S, Sivak JM, Flanagan JG (2012) Proteomics analyses of human optic nerve head astrocytes following biomechanical strain. Mol Cell Proteomics 11(M111):012302

    PubMed  Google Scholar 

  71. Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256

    Article  CAS  PubMed  Google Scholar 

  72. Buschini E, Piras A, Nuzzi R, Vercelli A (2011) Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 95:14–25

    Article  CAS  PubMed  Google Scholar 

  73. Zhao T et al (2015) Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye. J Neuroinflamm 12:121

    Article  CAS  Google Scholar 

  74. Alexandrov PN, Pogue A, Bhattacharjee S, Lukiw WJ (2011) Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport 22:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ (2011) Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer’s disease. J Neuroinflamm 8:4

    Article  Google Scholar 

  76. Stasi K, Nagel D, Yang X, Wang RF, Ren L, Podos SM, Mittag T, Danias J (2006) Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 47:1024–1029

    Article  PubMed  Google Scholar 

  77. Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J (2005) Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem 94:703–712

    Article  CAS  PubMed  Google Scholar 

  79. Wang WH, McNatt LG, Pang IH, Hellberg PE, Fingert JH, McCartney MD, Clark AF (2008) Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci 49:1916–1923

    Article  PubMed  Google Scholar 

  80. Bosco A et al (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446

    Article  PubMed  Google Scholar 

  81. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang H, Ma Q, Zhang YW, Xu H (2012) Proteolytic processing of Alzheimer’s beta-amyloid precursor protein. J Neurochem 120(Suppl 1):9–21

    Article  CAS  PubMed  Google Scholar 

  83. Yamamoto R, Yoneda S, Hara H (2004) Neuroprotective effects of beta-secretase inhibitors against rat retinal ganglion cell death. Neurosci Lett 370:61–64

    Article  CAS  PubMed  Google Scholar 

  84. Cai J et al (2012) beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 4:980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Devi L, Ohno M (2013) Mechanisms that lessen benefits of beta-secretase reduction in a mouse model of Alzheimer’s disease. Transl Psychiatry 3:e284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boulton ME, Cai J, Grant MB (2008) gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med 12:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gupta VB, Gupta VK, Martins R (2013) Semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:1660–1661

    Article  CAS  PubMed  Google Scholar 

  88. Ohno-Matsui K (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30:217–238

    Article  PubMed  Google Scholar 

  89. Foureaux G et al (2013) Antiglaucomatous effects of the activation of intrinsic Angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci 54:4296–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barker R, Love S, Kehoe PG (2010) Plasminogen and plasmin in Alzheimer’s disease. Brain Res 1355:7–15

    Article  CAS  PubMed  Google Scholar 

  91. Chintala SK (2016) Tissue and urokinase plasminogen activators instigate the degeneration of retinal ganglion cells in a mouse model of glaucoma. Exp Eye Res 143:17–27

    Article  CAS  PubMed  Google Scholar 

  92. Gupta V, Wall RV, Gupta V, Graham S (2016) Interaction with neuroserpin may be involved in the impairment of protease mediated amyloid β clearance from the brain and retina. Alzheimers Dement 11:864–865

    Article  Google Scholar 

  93. De Kimpe L, van Haastert ES, Kaminari A, Zwart R, Rutjes H, Hoozemans JJ, Scheper W (2013) Intracellular accumulation of aggregated pyroglutamate amyloid beta: convergence of aging and Abeta pathology at the lysosome. Age (Dordr) 35:673–687

    Article  CAS  Google Scholar 

  94. Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A (2012) Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener 1:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Van Broeck B et al (2008) Intraneuronal amyloid beta and reduced brain volume in a novel APP T714I mouse model for Alzheimer’s disease. Neurobiol Aging 29:241–252

    Article  PubMed  CAS  Google Scholar 

  96. Wang C, Sun B, Zhou Y, Grubb A, Gan L (2012) Cathepsin B degrades amyloid-beta in mice expressing wild-type human amyloid precursor protein. J Biol Chem 287:39834–39841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Im E, Kazlauskas A (2007) The role of cathepsins in ocular physiology and pathology. Exp Eye Res 84:383–388

    Article  CAS  PubMed  Google Scholar 

  98. Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, Bu G (2012) Differential regulation of amyloid-beta endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 287:44593–44601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Viiri J et al (2013) Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One 8:e69563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kitaoka Y, Munemasa Y, Kojima K, Hirano A, Ueno S, Takagi H (2013) Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration. Cell Death Dis 4:e860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez-Muela N, Germain F, Marino G, Fitze PS, Boya P (2012) Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 19:162–169

    Article  CAS  PubMed  Google Scholar 

  102. Hansson Petersen CA et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 105:13145–13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ren R, Zhang Y, Li B, Wu Y, Li B (2011) Effect of beta-amyloid (25-35) on mitochondrial function and expression of mitochondrial permeability transition pore proteins in rat hippocampal neurons. J Cell Biochem 112:1450–1457

    Article  CAS  PubMed  Google Scholar 

  104. Schrier SA, Falk MJ (2011) Mitochondrial disorders and the eye. Curr Opin Ophthalmol 22:325–331

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hung CH, Ho YS, Chang RC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456

    Article  CAS  PubMed  Google Scholar 

  106. Chindasub P, Lindsey JD, Duong-Polk K, Leung CK, Weinreb RN (2013) Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells. Invest Ophthalmol Vis Sci 54:96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59:290–294

    Article  CAS  PubMed  Google Scholar 

  108. Tamagno E, Guglielmotto M, Monteleone D, Tabaton M (2012) Amyloid-beta production: major link between oxidative stress and BACE1. Neurotox Res 22:208–219

    Article  CAS  PubMed  Google Scholar 

  109. Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C (2015) Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 52:12–27

    Article  CAS  PubMed  Google Scholar 

  110. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14:469–486

    Article  CAS  PubMed  Google Scholar 

  111. Wang MY, Ross-Cisneros FN, Aggarwal D, Liang CY, Sadun AA (2009) Receptor for advanced glycation end products is upregulated in optic neuropathy of Alzheimer’s disease. Acta Neuropathol 118:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31:1354–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hoh Kam J, Lenassi E, Jeffery G (2010) Viewing ageing eyes: diverse sites of amyloid beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS One 5:e13127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wong TY et al (2002) Retinal microvascular abnormalities and cognitive impairment in middle-aged persons: the Atherosclerosis Risk in Communities Study. Stroke 33:1487–1492

    Article  PubMed  Google Scholar 

  115. Gentile MT et al (2004) Mechanisms of soluble beta-amyloid impairment of endothelial function. J Biol Chem 279:48135–48142

    Article  CAS  PubMed  Google Scholar 

  116. Provias J, Jeynes B (2014) The role of the blood–brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014:191863

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS (2013) Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. J Neurochem 127:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eldred WD, Blute TA (2005) Imaging of nitric oxide in the retina. Vision Res 45:3469–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960

    Article  CAS  PubMed  Google Scholar 

  120. Graham SL, Butlin M, Lee M, Avolio AP (2013) Central blood pressure, arterial waveform analysis, and vascular risk factors in glaucoma. J Glaucoma 22:98–103

    Article  PubMed  Google Scholar 

  121. Galimberti D, Scarpini E (2016) Emerging amyloid disease-modifying drugs for Alzheimer’s disease. Expert Opin Emerg Drugs 21:5–7

    Article  PubMed  Google Scholar 

  122. Schneider LS et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275:251–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rakover I, Arbel M, Solomon B (2007) Immunotherapy against APP beta-secretase cleavage site improves cognitive function and reduces neuroinflammation in Tg2576 mice without a significant effect on brain abeta levels. Neurodegener Dis 4:392–402

    Article  CAS  PubMed  Google Scholar 

  124. Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ghai K, Zelinka C, Fischer AJ (2010) Notch signaling influences neuroprotective and proliferative properties of mature Muller glia. J Neurosci 30:3101–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kukar TL et al (2008) Substrate-targeting gamma-secretase modulators. Nature 453:925–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Solomon A, Kivipelto M (2009) Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 9:695–709

    Article  CAS  PubMed  Google Scholar 

  128. Pike CJ, Carroll JC, Rosario ER, Barron AM (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30:239–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Henderson VW (2014) Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol 142:99–106

    Article  CAS  PubMed  Google Scholar 

  130. Butchart J, Birch B, Bassily R, Wolfe L, Holmes C (2013) Male sex hormones and systemic inflammation in Alzheimer disease. Alzheimer Dis Assoc Disord 27:153–156

    Article  CAS  PubMed  Google Scholar 

  131. Blair JA, Palm R, Chang J, McGee H, Zhu X, Wang X, Casadesus G (2016) Luteinizing hormone downregulation but not estrogen replacement improves ovariectomy-associated cognition and spine density loss independently of treatment onset timing. Horm Behav 78:60–66

    Article  CAS  PubMed  Google Scholar 

  132. Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB (2008) Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 15:211–222

    CAS  PubMed  Google Scholar 

  133. Craggs L, Kalaria RN (2011) Revisiting dietary antioxidants, neurodegeneration and dementia. Neuroreport 22:1–3

    Article  CAS  PubMed  Google Scholar 

  134. Rhone M, Basu A (2008) Phytochemicals and age-related eye diseases. Nutr Rev 66:465–472

    Article  PubMed  Google Scholar 

  135. Chew EY, Clemons TE, Agron E, Sperduto RD, Sangiovanni JP, Kurinij N, Davis MD, Age-Related Eye Disease Study Research Group (2013) Long-term effects of vitamins C and E, beta-carotene, and zinc on age-related macular degeneration: AREDS report no 35. Ophthalmology 120:1604–1611 e4

    Article  PubMed  PubMed Central  Google Scholar 

  136. Caprioli J, Munemasa Y, Kwong JM, Piri N (2009) Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Trans Am Ophthalmol Soc 107:161–165

    PubMed  PubMed Central  Google Scholar 

  137. Giuffrida ML, Caraci F, De Bona P, Pappalardo G, Nicoletti F, Rizzarelli E, Copani A (2010) The monomer state of beta-amyloid: where the Alzheimer’s disease protein meets physiology. Rev Neurosci 21:83–93

    Article  CAS  PubMed  Google Scholar 

  138. Wang LL, Sun Y, Huang K, Zheng L (2013) Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res 57:1557–1568

    Article  CAS  PubMed  Google Scholar 

  139. Takeda A, Takada S, Ando M, Itagaki K, Tamano H, Suzuki M, Iwaki H, Oku N (2010) Impairment of recognition memory and hippocampal long-term potentiation after acute exposure to clioquinol. Neuroscience 171:443–450

    Article  CAS  PubMed  Google Scholar 

  140. Lannfelt L et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  141. Amijee H, Scopes DI (2009) The quest for small molecules as amyloid inhibiting therapies for Alzheimer’s disease. J Alzheimers Dis 17:33–47

    CAS  PubMed  Google Scholar 

  142. Wilcock DM et al (2006) Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci 26:5340–5346

    Article  CAS  PubMed  Google Scholar 

  143. Wang A, Das P, Switzer RC 3rd, Golde TE, Jankowsky JL (2011) Robust amyloid clearance in a mouse model of Alzheimer’s disease provides novel insights into the mechanism of amyloid-beta immunotherapy. J Neurosci 31:4124–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, Logovinsky V, Gellerfors P (2014) Perspectives on future Alzheimer therapies: amyloid-beta protofibrils—a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  145. Vellas B et al (2013) Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement 9:438–444

    Article  PubMed  Google Scholar 

  146. Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 6:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    Article  CAS  PubMed  Google Scholar 

  148. Davtyan H et al (2013) Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: prelude to a clinical trial. J Neurosci 33:4923–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wisniewski T, Goni F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lambracht-Washington D, Rosenberg RN (2015) A noninflammatory immune response in aged DNA Abeta42-immunized mice supports its safety for possible use as immunotherapy in AD patients. Neurobiol Aging 36:1274–1281

    Article  CAS  PubMed  Google Scholar 

  151. Demattos RB et al (2012) A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron 76:908–920

    Article  CAS  PubMed  Google Scholar 

  152. Salloway S et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Doody RS et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321

    Article  CAS  PubMed  Google Scholar 

  154. Cramer PE et al (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. LaClair KD, Manaye KF, Lee DL, Allard JS, Savonenko AV, Troncoso JC, Wong PC (2013) Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ulrich JD et al (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walker D, Lue LF, Paul G, Patel A, Sabbagh MN (2015) Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer’s disease. Expert Opin Investig Drugs 24:393–399

    Article  CAS  PubMed  Google Scholar 

  158. Wu HM et al (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 34:2344–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim TW, Kim DM, Park KH, Kim H (2002) Neuroprotective effect of memantine in a rabbit model of optic nerve ischemia. Korean J Ophthalmol 16:1–7

    Article  PubMed  Google Scholar 

  160. Osborne NN (2009) Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol 87:450–454

    Article  PubMed  Google Scholar 

  161. Porter T, Bharadwaj P, Groth D, Paxman A, Laws SM, Martins RN, Verdile G (2016) The effects of latrepirdine on amyloid-beta aggregation and toxicity. J Alzheimers Dis 50:895–905

    Article  CAS  PubMed Central  Google Scholar 

  162. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 25:CD005593

    Google Scholar 

  163. Almasieh M, MacIntyre JN, Pouliot M, Casanova C, Vaucher E, Kelly ME, Di Polo A (2013) Acetylcholinesterase inhibition promotes retinal vasoprotection and increases ocular blood flow in experimental glaucoma. Invest Ophthalmol Vis Sci 54:3171–3183

    Article  CAS  PubMed  Google Scholar 

  164. Ong WY, Farooqui T, Kokotos G, Farooqui AA (2015) Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 6:814–831

    Article  CAS  PubMed  Google Scholar 

  165. Landa G, Butovsky O, Shoshani J, Schwartz M, Pollack A (2008) Weekly vaccination with Copaxone (glatiramer acetate) as a potential therapy for dry age-related macular degeneration. Curr Eye Res 33:1011–1013

    Article  CAS  PubMed  Google Scholar 

  166. Nagahara AH et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Park JH, Strittmatter SM (2007) Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer’s transgenic mice. Curr Alzheimer Res 4:568–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu X, Zuo Z, Liu W, Wang Z, Hou Y, Fu Y, Han Y (2014) Upregulation of Nogo receptor expression induces apoptosis of retinal ganglion cells in diabetic rats. Neural Regen Res 9:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ghosh AK, Osswald HL (2014) BACE1 (beta-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 43:6765–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta 1822:631–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge research funding from the NHMRC, ORIA, MQRDG and Hillcrest foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer B. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Gupta, V.B., Chitranshi, N. et al. One protein, multiple pathologies: multifaceted involvement of amyloid β in neurodegenerative disorders of the brain and retina. Cell. Mol. Life Sci. 73, 4279–4297 (2016). https://doi.org/10.1007/s00018-016-2295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2295-x

Keywords

Navigation