Skip to main content

Advertisement

Log in

Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/OT-I model of acute graft-versus-host disease

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

T-cell receptor (TCR)-transgenic models of acute graft-versus-host disease (aGvHD) offer a straightforward and highly controlled approach to study the mechanisms and consequences of T-cell activation following allogeneic hematopoietic stem cell transplantation (aHSCT). Here, we report that aHSCT involving OT-I mice as donors, carrying an ovalbumin-specific CD8+ TCR, and Act-mOVA mice as recipients, expressing membrane-bound ovalbumin driven by the β-actin promoter, induces lethal aGvHD in a CD8+ T-cell-dependent, highly reproducible manner, within 4–7 days. Tracking of UBC-GFP/OT-I graft CD8+ T cells disclosed heavy infiltration of the gastrointestinal tract, liver, and lungs at the onset of the disease, and histology confirmed hallmark features of gastrointestinal aGVHD, hepatic aGvHD, and aGvHD-associated lymphocytic bronchitis in infiltrated organs. However, T-cell infiltration was virtually absent in the skin, a key target organ of human aGvHD, and histology confirmed the absence of cutaneous aGVHD, as well. We show that the model allows studying CD8+ T-cell responses in situ, as selective recovery of graft CD45.1/OT-I CD8+ T cells from target organs is simple and feasible by automated tissue dissociation and subsequent cell sorting. Assessment of interferon-gamma production by flow cytometry, granzyme-B release by ELISA, TREC assay, and whole-genome gene expression profiling confirmed that isolated graft CD8+ T cells remained intact, underwent clonal expansion, and exerted effector functions in all affected tissues. Taken together, these data demonstrate that the OT-I/Act-mOVA model is suitable to study the CD8+ T-cell-mediated effector mechanisms in a disease closely resembling fatal human gastrointestinal and hepatic aGVHD that may develop after aHSCT using HLA-matched unrelated donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aGvHD:

Acute graft-versus-host disease

aHSCT:

Allogeneic hematopoietic stem cell transplantation

Act:

Chicken beta-actin promoter

APC:

Antigen-presenting cell

CMV:

Cytomegalovirus

CTL:

Cytotoxic T lymphocyte

DEG:

Differentially expressed gene

ELISA:

Enzyme-linked immunosorbent assay

FDR:

False discovery rate

GFP:

Green fluorescent protein

GI:

Gastrointestinal

GSEA:

Gene set enrichment analysis

HE:

Hematoxylin-eosin staining

HUGO:

Human Genome Organisation

IHC:

Immunohistochemistry

K14:

Cytokeratin 14 promoter

miHA:

Minor histocompatibility antigen

mOVA:

Membrane-bound chicken ovalbumin

MUD:

MHC-matched unrelated donor

NES:

Normalized enrichment score

PBMC:

Peripheral blood mononuclear cell

PDGF:

Platelet-derived growth factor

sjTREC:

Signal joint T-cell receptor excision circles

sOVA:

Soluble chicken ovalbumin

TBI:

Total body irradiation

UBC:

Human ubiqutin C promoter

References

  1. Blazar BR, Murphy WJ, Abedi M (2012) Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12(6):443–458. doi:10.1038/nri3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MR (2012) Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 209(5):903–911. doi:10.1084/jem.20112408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, Zhu W, Sporrer D, Hehlgans T, Kreutz M, Holler B, Wolff D, Edinger M, Andreesen R, Levine JE, Ferrara JL, Gessner A, Spang R, Oefner PJ (2014) Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 20(5):640–645. doi:10.1016/j.bbmt.2014.01.030

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferrara JL (1993) Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol 5(5):794–799

    Article  CAS  PubMed  Google Scholar 

  5. Hu SW, Cotliar J (2011) Acute graft-versus-host disease following hematopoietic stem-cell transplantation. Dermatol Ther 24(4):411–423. doi:10.1111/j.1529-8019.2011.01436.x

    Article  PubMed  Google Scholar 

  6. Reddy P, Ferrara JLM (2008) Mouse models of graft-versus-host disease. In: Girard L (ed) StemBook. Cambridge,MA. doi:10.3824/stembook.1.36.1

  7. Reddy P, Negrin R, Hill GR (2008) Mouse models of bone marrow transplantation. Biol Blood Marrow Transplant 14(1 Suppl 1):129–135. doi:10.1016/j.bbmt.2007.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schroeder MA, DiPersio JF (2011) Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 4(3):318–333. doi:10.1242/dmm.006668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rolink AG, Pals ST, Gleichmann E (1983) Allosuppressor and allohelper T cells in acute and chronic graft-vs.-host disease. II. F1 recipients carrying mutations at H-2 K and/or I-A. J Exp Med 157(2):755–771

    Article  CAS  PubMed  Google Scholar 

  10. van Leeuwen L, Guiffre A, Atkinson K, Rainer SP, Sewell WA (2002) A two-phase pathogenesis of graft-versus-host disease in mice. Bone Marrow Transplant 29(2):151–158. doi:10.1038/sj.bmt.1703328

    Article  PubMed  Google Scholar 

  11. Korngold R, Sprent J (1978) Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J Exp Med 148(6):1687–1698

    Article  CAS  PubMed  Google Scholar 

  12. Korngold R (1992) Lethal graft-versus-host disease in mice directed to multiple minor histocompatibility antigens: features of CD8+ and CD4+ T cell responses. Bone Marrow Transplant 9(5):355–364

    CAS  PubMed  Google Scholar 

  13. Toubai T, Tawara I, Sun Y, Liu C, Nieves E, Evers R, Friedman T, Korngold R, Reddy P (2012) Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic-derived antigen-presenting cells. Blood 119(16):3844–3853. doi:10.1182/blood-2011-10-384057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu XZ, Albert MH, Anasetti C (2006) Alloantigen affinity and CD4 help determine severity of graft-versus-host disease mediated by CD8 donor T cells. J Immunol 176(6):3383–3390

    Article  CAS  PubMed  Google Scholar 

  15. Albert MH, Liu Y, Anasetti C, Yu XZ (2005) Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation. Eur J Immunol 35(9):2598–2607. doi:10.1002/eji.200526077

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Li H, Matte-Martone C, Cui W, Li N, Tan HS, Roopenian D, Shlomchik WD (2011) Mechanisms of antigen presentation to T cells in murine graft-versus-host disease: cross-presentation and the appearance of cross-presentation. Blood 118(24):6426–6437. doi:10.1182/blood-2011-06-358747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shibaki A, Sato A, Vogel JC, Miyagawa F, Katz SI (2004) Induction of GVHD-like skin disease by passively transferred CD8(+) T-cell receptor transgenic T cells into keratin 14-ovalbumin transgenic mice. J Invest Dermatol 123(1):109–115. doi:10.1111/j.0022-202X.2004.22701.x

    Article  CAS  PubMed  Google Scholar 

  18. Dignan FL, Clark A, Amrolia P, Cornish J, Jackson G, Mahendra P, Scarisbrick JJ, Taylor PC, Hadzic N, Shaw BE, Potter MN, Haemato-oncology Task Force of British Committee for Standards in H, British Society for B, Marrow T (2012) Diagnosis and management of acute graft-versus-host disease. Br J Haematol 158(1):30–45. doi:10.1111/j.1365-2141.2012.09129.x

    Article  CAS  PubMed  Google Scholar 

  19. Turner BE, Kambouris ME, Sinfield L, Lange J, Burns AM, Lourie R, Atkinson K, Hart DN, Munster DJ, Rice AM (2008) Reduced intensity conditioning for allogeneic hematopoietic stem-cell transplant determines the kinetics of acute graft-versus-host disease. Transplantation 86(7):968–976. doi:10.1097/TP.0b013e3181874787

    Article  PubMed  Google Scholar 

  20. Broers AE, Meijerink JP, van Dongen JJ, Posthumus SJ, Lowenberg B, Braakman E, Cornelissen JJ (2002) Quantification of newly developed T cells in mice by real-time quantitative PCR of T-cell receptor rearrangement excision circles. Exp Hematol 30(7):745–750

    Article  CAS  PubMed  Google Scholar 

  21. Ehst BD, Ingulli E, Jenkins MK (2003) Development of a novel transgenic mouse for the study of interactions between CD4 and CD8 T cells during graft rejection. Am J Transplant 3(11):1355–1362

    Article  CAS  PubMed  Google Scholar 

  22. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27

    Article  CAS  PubMed  Google Scholar 

  23. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S (2011) Retro-orbital injections in mice. Lab Anim (NY) 40(5):155–160. doi:10.1038/laban0511-155

    Article  Google Scholar 

  24. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. doi:10.1038/nm.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waldman E, Lu SX, Hubbard VM, Kochman AA, Eng JM, Terwey TH, Muriglan SJ, Kim TD, Heller G, Murphy GF, Liu C, Alpdogan O, van den Brink MR (2006) Absence of beta7 integrin results in less graft-versus-host disease because of decreased homing of alloreactive T cells to intestine. Blood 107(4):1703–1711. doi:10.1182/blood-2005-08-3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsuchiyama J, Yoshino T, Saito T, Furukawa T, Ito K, Fuse I, Aizawa Y (2009) Cutaneous lymphocyte antigen-positive T cells may predict the development of acute GVHD: alterations and differences of CLA+ T- and NK-cell fractions. Bone Marrow Transplant 43(11):863–873. doi:10.1038/bmt.2008.392

    Article  CAS  PubMed  Google Scholar 

  27. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, Tscharke DC, Heath WR, Inouye M, Carbone FR, Gebhardt T (2013) The developmental pathway for CD103(+)CD8+ Tissue-resident memory T cells of skin. Nat Immunol 14(12):1294–1301. doi:10.1038/ni.2744

    Article  CAS  PubMed  Google Scholar 

  28. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS (2005) Leukocyte migration and graft-versus-host disease. Blood 105(11):4191–4199. doi:10.1182/blood-2004-12-4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beschorner WE, Saral R, Hutchins GM, Tutschka PJ, Santos GW (1978) Lymphocytic bronchitis associated with graft-versus-host disease in recipients of bone-marrow transplants. N Engl J Med 299(19):1030–1036. doi:10.1056/NEJM197811092991902

    Article  CAS  PubMed  Google Scholar 

  30. Bolanos-Meade J, Ioffe O, Hey JC, Vogelsang GB, Akpek G (2005) Lymphocytic pneumonitis as the manifestation of acute graft-versus-host disease of the lung. Am J Hematol 79(2):132–135. doi:10.1002/ajh.20315

    Article  PubMed  Google Scholar 

  31. Liu QF, Luo XD, Ning J, Xu D, Fan ZP, Sun J, Zhang Y, Xu B, Wei YQ (2009) Association between acute graft versus host disease and lung injury after allogeneic haematopoietic stem cell transplantation. Hematology 14(2):63–72. doi:10.1179/102453309X385142

    Article  PubMed  Google Scholar 

  32. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, Ferrara JL (2002) Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med 8(6):575–581. doi:10.1038/nm0602-575

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C, Carbone FR, Heath WR (2001) Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 166(10):6099–6103

    Article  CAS  PubMed  Google Scholar 

  34. Miyagawa F, Gutermuth J, Zhang H, Katz SI (2010) The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 35(3):192–198. doi:10.1016/j.jaut.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weinzierl AO, Lemmel C, Schoor O, Muller M, Kruger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanovic S (2007) Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 6(1):102–113. doi:10.1074/mcp.M600310-MCP200

    Article  CAS  PubMed  Google Scholar 

  36. Azukizawa H, Kosaka H, Sano S, Heath WR, Takahashi I, Gao XH, Sumikawa Y, Okabe M, Yoshikawa K, Itami S (2003) Induction of T-cell-mediated skin disease specific for antigen transgenically expressed in keratinocytes. Eur J Immunol 33(7):1879–1888. doi:10.1002/eji.200323630

    Article  CAS  PubMed  Google Scholar 

  37. Pilon CB, Petillon S, Naserian S, Martin GH, Badoual C, Lang P, Azoulay D, Piaggio E, Grimbert P, Cohen JL (2014) Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. Am J Transplant 14(12):2874–2882. doi:10.1111/ajt.12944

    Article  CAS  PubMed  Google Scholar 

  38. Koestner W, Hapke M, Herbst J, Klein C, Welte K, Fruehauf J, Flatley A, Vignali DA, Hardtke-Wolenski M, Jaeckel E, Blazar BR, Sauer MG (2011) PD-L1 blockade effectively restores strong graft-versus-leukemia effects without graft-versus-host disease after delayed adoptive transfer of T-cell receptor gene-engineered allogeneic CD8+ T cells. Blood 117(3):1030–1041. doi:10.1182/blood-2010-04-283119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hulsdunker J, Zeiser R (2015) Insights into the pathogenesis of GvHD: what mice can teach us about man. Tissue Antigens 85(1):2–9. doi:10.1111/tan.12497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tamás Masszi and András Falus for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Pós.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by the Hungarian Academy of Sciences (“Lendület” LP2012-49/2012), and the Hungarian National Research, Development and Innovation Office (OTKA K 116340).

Additional information

B. Érsek and N. Lupsa contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2016_2237_MOESM1_ESM.tif

Supplementary Fig. 1: Successful elimination host CD8+ T cells by lethal dose TBI. Grafting CD45.1 bone marrow into CD45.2 hosts following lethal dose TBI confirms successful elimination of host CTLs by Day 7. Full replacement of host CTLs with graft-derived CTLs occurs by aHSCT + Day 14. Representative flow cytometric analysis of the peripheral blood of affected animals (TIFF 1558 kb)

18_2016_2237_MOESM2_ESM.xlsx

Supplementary Table 1: Differentially expressed genes discriminating between CD45.1/OT-I CD8+ T cells grafted into Act-mOVA mive before (aHSCT + Day 0) and 4 days after grafting (aHSCT + Day 4). Table of 2514 genes differentially expressed by CD45.1/OT-I CD8+ T cells in the graft (aHSCT + Day 0), and graft-derived T cells infiltrating the small intestine, lung, and liver of Act-mOVA recipients 4 days later (aHSCT + Day 4). Agilent microarray probeset IDs, HUGO Gene Symbols, uncorrected, and Benjamini--Hochberg corrected results of One-Way ANOVA followed by Tukey’s all pairwise analysis, p values, fold-changes, gene names, full gene annotations, and Agilent probeset descriptions are shown (XLSX 867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Érsek, B., Lupsa, N., Pócza, P. et al. Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/OT-I model of acute graft-versus-host disease. Cell. Mol. Life Sci. 73, 3935–3947 (2016). https://doi.org/10.1007/s00018-016-2237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2237-7

Keywords

Navigation