Skip to main content
Log in

Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca2+ levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice was significantly better than that of control mdx Cx43fl/flCx45fl/fl mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Emery AE (2002) Muscular dystrophy into the new millennium. Neuromuscul Disord 12:343–349

    Article  PubMed  Google Scholar 

  2. Ervasti JM, Campbell KP (1993) A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  CAS  PubMed  Google Scholar 

  3. Pillers D (2014) A new day for Duchenne’s? The time has come for newborn screening. Mol Genet Metab 113:11–13

    Article  CAS  PubMed  Google Scholar 

  4. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balnave CD, Allen DG (1995) Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol 488:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeung EW, Head SI, Allen DG (2003) Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. J Physiol 552:449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuda R, Nishikawa A, Tanaka H (1995) Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem 118:959–964

    Article  CAS  PubMed  Google Scholar 

  8. Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002) Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C et al (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci USA 110:16229–16234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sáez JC, Leybaert L (2014) Hunting for connexin hemichannels. FEBS Lett 588:1205–1211

    Article  PubMed  Google Scholar 

  11. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    Article  CAS  PubMed  Google Scholar 

  12. Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673

    Article  CAS  PubMed  Google Scholar 

  13. Bao L, Sachs F, Dahl G (2004) Connexins are mechanosensitive. Am J Physiol Cell Physiol 287:C1389–C1395

    Article  CAS  PubMed  Google Scholar 

  14. Fiori MC, Figueroa V, Zoghbi ME, Saéz JC, Reuss L, Altenberg GA (2012) Permeation of calcium through purified connexin 26 hemichannels. J Biol Chem 287:40826–40834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schalper KA, Sánchez HA, Lee SC, Altenberg GA, Nathanson MH, Sáez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299:C1504–C1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18:824–834

    CAS  PubMed  Google Scholar 

  17. Valladares D, Almarza G, Contreras A, Pavez M, Buvinic S, Jaimovich E et al (2013) Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in mdx mice is a likely cause of dystrophy. PLoS One 8:e75340

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yeung D, Zablocki K, Lien CF, Jiang T, Arkle S, Brutkowski W et al (2006) Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells. FASEB J 20:610–620

    Article  CAS  PubMed  Google Scholar 

  19. Young CN, Brutkowski W, Lien CF, Arkle S, Lochmüller H, Zabłocki K et al (2012) P2X7 purinoceptor alterations in dystrophic mdx mouse muscles: relationship to pathology and potential target for treatment. J Cell Mol Med 16:1026–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    Article  CAS  PubMed  Google Scholar 

  21. Sáez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389

    Article  PubMed  Google Scholar 

  22. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  23. Perálvarez-Marín A, Doñate-Macian P, Gaudet R (2013) What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J 280:5471–5487

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M et al (2012) Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 245:423–436

    Article  CAS  PubMed  Google Scholar 

  25. Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MV et al (2013) The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75:594–603

    Article  CAS  PubMed  Google Scholar 

  26. Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF et al (2015) Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front Cell Dev Biol 3:25 (eCollection)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Araya R, Eckardt D, Maxeiner S, Krüger O, Theis M, Willecke K, Sáez JC (2005) Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. J Cell Sci 118:27–37

    Article  CAS  PubMed  Google Scholar 

  28. Dahl G, Qiu F, Wang J (2013) The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 75:583–593

    Article  CAS  PubMed  Google Scholar 

  29. Nakazawa K, Liu M, Inoue K, Ohno Y (1997) Potent inhibition by trivalent cations of ATP-gated channels. Eur J Pharmacol 325:237–243

    Article  CAS  PubMed  Google Scholar 

  30. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP et al (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385

    Article  CAS  PubMed  Google Scholar 

  31. Burr AR, Molkentin JD (2015) Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 22:1402–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bia BL, Cassidy PJ, Young ME, Rafael JA, Leighton B, Davies KE et al (1999) Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol 31:1857–1862

    Article  CAS  PubMed  Google Scholar 

  33. Vannucchi MG, Corsani L, Azzena GB, Faussone-Pellegrini MS, Mancinelli R (2004) Functional activity and expression of inducible nitric oxide synthase (iNOS) in muscle of the isolated distal colon of mdx mice. Muscle Nerve 29:795–803

    Article  CAS  PubMed  Google Scholar 

  34. Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108:2197–2204

    CAS  PubMed  Google Scholar 

  35. Turpin SM, Lancaster GI, Darby I, Febbraio MA, Watt MJ (2006) Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab 291:E1341–E1350

    Article  CAS  PubMed  Google Scholar 

  36. Percy ME, Andrews DF, Thompson MW (1982) Serum creatine kinase in the detection of Duchenne muscular dystrophy carriers: effects of season and multiple testing. Muscle Nerve 5:58–64

    Article  CAS  PubMed  Google Scholar 

  37. Glesby MJ, Rosenmann E, Nylen EG, Wrogemann K (1988) Serum CK, calcium, magnesium, and oxidative phosphorylation in mdx mouse muscular dystrophy. Muscle Nerve 11:852–856

    Article  CAS  PubMed  Google Scholar 

  38. Manning J, O’Malley D (2015) What has the mdx mouse model of duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil 36:155–167

    Article  CAS  PubMed  Google Scholar 

  39. Lagrota-Candido J, Vasconcellos R, Cavalcanti M, Bozza M, Savino W, Quirico-Santos T (2002) Resolution of skeletal muscle inflammation in mdx dystrophic mouse is accompanied by increased immunoglobulin and interferon-gamma production. Int J Exp Pathol 83:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Polfliet MM, Fabriek BO, Daniëls WP, Dijkstra CD, van den Berg TK (2006) The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211:419–425

    Article  CAS  PubMed  Google Scholar 

  41. Pigozzo SR, Da Re L, Romualdi C, Mazzara PG, Galletta E, Fletcher S et al (2013) Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal. PLoS One 8:e72147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  43. von Maltzahn J, Euwens C, Willecke K, Söhl G (2004) The novel mouse connexin39 gene is expressed in developing striated muscle. J Cell Sci 117:5381–5392

    Article  Google Scholar 

  44. Iwata Y, Katanosaka Y, Hisamitsu T, Wakabayashi S (2007) Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. Am J Pathol 171:1576–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cerecedo D, Mondragón R, Cisneros B, Martínez-Pérez F, Martínez-Rojas D, Rendón A (2006) Role of dystrophins and utrophins in platelet adhesion process. Br J Haematol 134:83–91

    Article  CAS  PubMed  Google Scholar 

  46. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    Article  CAS  PubMed  Google Scholar 

  47. Orellana JA, Díaz E, Schalper KA, Vargas AA, Bennett MV, Sáez JC (2011) Cation permeation through connexin 43 hemichannels is cooperative, competitive and saturable with parameters depending on the permeant species. Biochem Biophys Res Commun 409:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC et al (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci USA 107:22659–22664

    Article  PubMed  PubMed Central  Google Scholar 

  49. Altamirano F, López JR, Henríquez C, Molinski T, Allen PD, Jaimovich E (2012) Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes. J Biol Chem 287:20876–20887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lawler JM (2011) Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy. J Physiol 589:2161–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyatake M, Miike T, Zhao J, Yoshioka K, Uchino M, Usuku G (1989) Possible systemic smooth muscle layer dysfunction due to a deficiency of dystrophin in Duchenne muscular dystrophy. J Neurol Sci 93:11–17

    Article  CAS  PubMed  Google Scholar 

  53. Higuchi I, Niiyama T, Uchida Y, Inose M, Nakagawa M, Arimura K et al (1999) Multiple episodes of thrombosis in a patient with Becker muscular dystrophy with marked expression of utrophin on the muscle cell membrane. Acta Neuropathol 98:313–316

    Article  CAS  PubMed  Google Scholar 

  54. Martin EA, Barresi R, Byrne BJ, Tsimerinov EI, Scott BL, Walker AE et al (2012) Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci Transl Med 4:162ra155

    Article  PubMed  PubMed Central  Google Scholar 

  55. Theis M, de Wit C, Schlaeger TM, Eckardt D, Krüger O, Döring B et al (2001) Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29:1–13

    Article  CAS  PubMed  Google Scholar 

  56. Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T et al (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    Article  CAS  PubMed  Google Scholar 

  57. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF et al (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specificgene deletion in mice. Proc Natl Acad Sci USA 102:1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trebbin AL, Hoey AJ (2009) A novel and simple method for genotyping the mdx mouse using high-resolution melt polymerase chain reaction. Muscle Nerve 39:603–608

    Article  CAS  PubMed  Google Scholar 

  59. Shin JH, Hakim CH, Zhang K, Duan D (2011) Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction. Muscle Nerve 43:283–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Teresa Vergara and Ms. Paola Fernández for their technical support. We also thank members of the Spanish families, whose participation made this study possible. This work was partially supported by CONICYT/PAI Proyecto de Inserción en la Academia 79140023 (to LAC); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT): Grant 3130662 (to CP); 1150291 (to JCS), ICM-Economía P09-022-F Centro Interdisciplinario de Neurociencias de Valparaíso (to JCS), grants from the Spanish Ministry of Economy and Competitiveness (Consolider CSD2008-00005 and BFU2013-33821) and the Community of Madrid (Neurotec-P2010/BMD-2460) (to LCB). The research stay of LAC and CP in the Bonn laboratory was supported by a grant of CONICYT and the German Academic Exchange Service (to JCS and KW). Additional work in the Bonn laboratory was funded by the German Research Foundation (Wi 270/33.1 and SFB 645, B2) to KW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis A. Cea or Juan C. Sáez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors certify that the experiments comply with the current laws of Chile, where the experiments were performed. All protocols were approved by the Bioethics Committee of the Pontificia Universidad Católica de Chile (Protocol No. 176) in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All efforts were made to minimize animal suffering, reduce the number of animals used, and alternatives to in vivo techniques, if available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea, L.A., Puebla, C., Cisterna, B.A. et al. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cell. Mol. Life Sci. 73, 2583–2599 (2016). https://doi.org/10.1007/s00018-016-2132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2132-2

Keywords

Navigation