Skip to main content

Advertisement

Log in

The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Landolfo S, Gariglio M, Gribaudo G et al (2003) The human cytomegalovirus. Pharmacol Ther 98(3):269–297

    Article  CAS  PubMed  Google Scholar 

  2. van de Berg PJ, van Stijn A, Ten Berge IJ et al (2008) A fingerprint left by cytomegalovirus infection in the human T cell compartment. J Clin Virol 41(3):213–217. doi:10.1016/j.jcv.2007.10.016

    Article  PubMed  CAS  Google Scholar 

  3. Braendstrup P, Mortensen BK, Justesen S et al (2014) Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One 9(4):e94892. doi:10.1371/journal.pone.0094892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Wills MR, Carmichael AJ, Mynard K et al (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70(11):7569–7579

    PubMed Central  CAS  PubMed  Google Scholar 

  5. La Rosa C, Diamond DJ (2012) The immune response to human CMV. Future Virol 7(3):279–293. doi:10.2217/fvl.12.8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Revello MG, Gerna G (2002) Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev 15(4):680–715

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rossini G, Cerboni C, Santoni A et al (2012) Interplay between human cytomegalovirus and intrinsic/innate host responses: a complex bidirectional relationship. Mediat Inflamm 2012:607276

    Google Scholar 

  8. Waldrop SL, Pitcher CJ, Peterson DM et al (1997) Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 99(7):1739–1750. doi:10.1172/JCI119338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kern F, Bunde T, Faulhaber N et al (2002) Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 185(12):1709–1716

    Article  CAS  PubMed  Google Scholar 

  10. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188(12):2199–2204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gamadia LE, Rentenaar RJ, van Lier RA et al (2004) Properties of CD4(+) T cells in human cytomegalovirus infection. Hum Immunol 65(5):486–492. doi:10.1016/j.humimm.2004.02.020

    Article  CAS  PubMed  Google Scholar 

  12. van Leeuwen EM, Remmerswaal EB, Vossen MT et al (2004) Emergence of a CD4+ CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173(3):1834–1841

    Article  PubMed  Google Scholar 

  13. van Leeuwen EM, ten Berge IJ, van Lier RA (2007) Induction and maintenance of CD8+ T cells specific for persistent viruses. Adv Exp Med Biol 590:121–137. doi:10.1007/978-0-387-34814-8_9

    Article  PubMed  Google Scholar 

  14. Sallusto F, Lenig D, Forster R et al (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712

    Article  CAS  PubMed  Google Scholar 

  15. Gillespie GM, Wills MR, Appay V et al (2000) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol 74(17):8140–8150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gamadia LE, Remmerswaal EB, Weel JF et al (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101(7):2686–2692. doi:10.1182/blood-2002-08-2502

    Article  CAS  PubMed  Google Scholar 

  17. Chidrawar S, Khan N, Wei W et al (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3):423–432. doi:10.1111/j.1365-2249.2008.03785.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. van Leeuwen EM, Remmerswaal EB, Heemskerk MH et al (2006) Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection. Blood 108(9):3121–3127. doi:10.1182/blood-2006-03-006809

    Article  PubMed  CAS  Google Scholar 

  19. van Lier RA, ten Berge IJ, Gamadia LE (2003) Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol 3(12):931–939. doi:10.1038/nri1254

    Article  PubMed  Google Scholar 

  20. Snyder CM (2011) Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection. Immunol Res 51(2–3):195–204. doi:10.1007/s12026-011-8251-9

    Article  CAS  PubMed  Google Scholar 

  21. Snyder CM, Loewendorf A, Bonnett EL et al (2009) CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection. J Immunol 183(6):3932–3941. doi:10.4049/jimmunol.0900227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hertoghs KM, Moerland PD, van Stijn A et al (2010) Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J Clin Invest 120(11):4077–4090. doi:10.1172/JCI42758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78(11):5535–5545. doi:10.1128/JVI.78.11.5535-5545.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zajac AJ, Blattman JN, Murali-Krishna K et al (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188(12):2205–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Walton SM, Torti N, Mandaric S et al (2011) T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency. Eur J Immunol 41(8):2248–2259. doi:10.1002/eji.201141575

    Article  CAS  PubMed  Google Scholar 

  26. Sukdolak C, Tischer S, Dieks D et al (2013) CMV-, EBV- and ADV-specific T cell immunity: screening and monitoring of potential third-party donors to improve post-transplantation outcome. Biol Blood Marrow Transplant 19(10):1480–1492

    Article  CAS  PubMed  Google Scholar 

  27. Sylwester AW, Mitchell BL, Edgar JB et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685. doi:10.1084/jem.20050882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ljungman P, Bregni M, Brune M et al (2010) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009. Bone Marrow Transplant 45(2):219–234

    Article  CAS  PubMed  Google Scholar 

  29. Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–1826

    Article  CAS  PubMed  Google Scholar 

  30. Gratwohl A, Baldomero H, Aljurf M et al (2010) Hematopoietic stem cell transplantation: a global perspective. JAMA 303(16):1617–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Passweg JR, Baldomero H, Bregni M et al (2013) Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant 48(9):1161–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Krol L, Stuchly J, Hubacek P et al (2011) Signature profiles of CMV-specific T-cells in patients with CMV reactivation after hematopoietic SCT. Bone Marrow Transplant 46(8):1089–1098. doi:10.1038/bmt.2010.261

    Article  CAS  PubMed  Google Scholar 

  33. Dolstra H, Preijers F, Van de Wiel-van Kemenade E et al (1995) Expansion of CD8+ CD57+ T cells after allogeneic BMT is related with a low incidence of relapse and with cytomegalovirus infection. Br J Haematol 90(2):300–307

    Article  CAS  PubMed  Google Scholar 

  34. Tuthill M, Chen F, Paston S et al (2009) The prevention and treatment of cytomegalovirus infection in haematopoietic stem cell transplantation. Cancer Immunol Immunother 58(9):1481–1488

    Article  PubMed  Google Scholar 

  35. Cwynarski K, Ainsworth J, Cobbold M et al (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97(5):1232–1240

    Article  CAS  PubMed  Google Scholar 

  36. Reusser P, Riddell SR, Meyers JD et al (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78(5):1373–1380

    CAS  PubMed  Google Scholar 

  37. Gratama JW, van Esser JW, Lamers CH et al (2001) Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 98(5):1358–1364

    Article  CAS  PubMed  Google Scholar 

  38. Moss P, Khan N (2004) CD8(+) T-cell immunity to cytomegalovirus. Hum Immunol 65(5):456–464

    Article  CAS  PubMed  Google Scholar 

  39. Sester M, Sester U, Gartner B et al (2002) Sustained high frequencies of specific CD4 T cells restricted to a single persistent virus. J Virol 76(8):3748–3755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Flinsenberg TW, Spel L, Jansen M et al (2015) Cognate CD4 T-cell licensing of dendritic cells heralds anti-cytomegalovirus CD8 T-cell immunity after human allogeneic umbilical cord blood transplantation. J Virol 89(2):1058–1069. doi:10.1128/JVI.01850-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bitmansour AD, Waldrop SL, Pitcher CJ et al (2001) Clonotypic structure of the human CD4+ memory T cell response to cytomegalovirus. J Immunol 167(3):1151–1163

    Article  CAS  PubMed  Google Scholar 

  42. Foster AE, Gottlieb DJ, Sartor M et al (2002) Cytomegalovirus-specific CD4+ and CD8+ T-cells follow a similar reconstitution pattern after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 8(9):501–511

    Article  PubMed  Google Scholar 

  43. Elson LH, Nutman TB, Metcalfe DD et al (1995) Flow cytometric analysis for cytokine production identifies T helper 1, T helper 2, and T helper 0 cells within the human CD4+ CD27- lymphocyte subpopulation. J Immunol 154(9):4294–4301

    CAS  PubMed  Google Scholar 

  44. Openshaw P, Murphy EE, Hosken NA et al (1995) Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J Exp Med 182(5):1357–1367

    Article  CAS  PubMed  Google Scholar 

  45. Lanzavecchia A, Sallusto F (2000) Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290(5489):92–97

    Article  CAS  PubMed  Google Scholar 

  46. Pourgheysari B, Piper KP, McLarnon A et al (2009) Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant 43(11):853–861

    Article  CAS  PubMed  Google Scholar 

  47. Aubert G, Hassan-Walker AF, Madrigal JA et al (2001) Cytomegalovirus-specific cellular immune responses and viremia in recipients of allogeneic stem cell transplants. J Infect Dis 184(8):955–963

    Article  CAS  PubMed  Google Scholar 

  48. Lidehall AK, Sund F, Lundberg T et al (2005) T cell control of primary and latent cytomegalovirus infections in healthy subjects. J Clin Immunol 25(5):473–481. doi:10.1007/s10875-005-5372-8

    Article  PubMed  Google Scholar 

  49. Schulenburg A, Watkins-Riedel T, Greinix HT et al (2001) CMV monitoring after peripheral blood stem cell and bone marrow transplantation by pp65 antigen and quantitative PCR. Bone Marrow Transplant 28(8):765–768. doi:10.1038/sj.bmt.1703227

    Article  CAS  PubMed  Google Scholar 

  50. Hebart H, Daginik S, Stevanovic S et al (2002) Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 99(10):3830–3837

    Article  CAS  PubMed  Google Scholar 

  51. Ozdemir E, Saliba RM, Champlin RE et al (2007) Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant 40(2):125–136. doi:10.1038/sj.bmt.1705699

    Article  CAS  PubMed  Google Scholar 

  52. Lilleri D, Gerna G, Zelini P et al (2012) Monitoring of human cytomegalovirus and virus-specific T-cell response in young patients receiving allogeneic hematopoietic stem cell transplantation. PLoS One 7(7):e41648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65(5):432–436

    Article  CAS  PubMed  Google Scholar 

  54. Meyers JD, Bowden RA, Counts GW (1989) Infectious complications of marrow transplant: risk factors for infection. Prog Clin Biol Res 309:357–366

    CAS  PubMed  Google Scholar 

  55. Maury S, Mary JY, Rabian C et al (2001) Prolonged immune deficiency following allogeneic stem cell transplantation: risk factors and complications in adult patients. Br J Haematol 115(3):630–641

    Article  CAS  PubMed  Google Scholar 

  56. Junghanss C, Boeckh M, Carter RA et al (2002) Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 99(6):1978–1985

    Article  CAS  PubMed  Google Scholar 

  57. Kollman C, Howe CW, Anasetti C et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051

    Article  CAS  PubMed  Google Scholar 

  58. Boeckh M, Nichols WG (2004) The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood 103(6):2003–2008. doi:10.1182/blood-2003-10-3616

    Article  CAS  PubMed  Google Scholar 

  59. Bowden RA, Sayers M, Flournoy N et al (1986) Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med 314(16):1006–1010. doi:10.1056/NEJM198604173141602

    Article  CAS  PubMed  Google Scholar 

  60. Nichols WG, Boeckh M, Carter RA et al (2003) Transferred herpes simplex virus immunity after stem-cell transplantation: clinical implications. J Infect Dis 187(5):801–808. doi:10.1086/367894

    Article  PubMed  Google Scholar 

  61. Lacey SF, Gallez-Hawkins G, Crooks M et al (2002) Characterization of cytotoxic function of CMV-pp65-specific CD8+ T-lymphocytes identified by HLA tetramers in recipients and donors of stem-cell transplants. Transplantation 74(5):722–732. doi:10.1097/01.TP.0000026247.12286.59

    Article  CAS  PubMed  Google Scholar 

  62. Ljungman P, Brand R, Einsele H et al (2003) Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood 102(13):4255–4260. doi:10.1182/blood-2002-10-3263

    Article  CAS  PubMed  Google Scholar 

  63. Geginat J, Sallusto F, Lanzavecchia A (2001) Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 194(12):1711–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhou W, Longmate J, Lacey SF et al (2009) Impact of donor CMV status on viral infection and reconstitution of multifunction CMV-specific T cells in CMV-positive transplant recipients. Blood 113(25):6465–6476. doi:10.1182/blood-2009-02-203307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Nichols WG, Corey L, Gooley T et al (2002) High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis 185(3):273–282. doi:10.1086/338624

    Article  PubMed  Google Scholar 

  66. Borchers S, Bremm M, Lehrnbecher T et al (2012) Sequential anti-cytomegalovirus response monitoring may allow prediction of cytomegalovirus reactivation after allogeneic stem cell transplantation. PLoS One 7(12):e50248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Borchers S, Luther S, Lips U et al (2011) Tetramer monitoring to assess risk factors for recurrent cytomegalovirus reactivation and reconstitution of antiviral immunity post allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 13(3):222–236. doi:10.1111/j.1399-3062.2011.00626.x

    Article  CAS  PubMed  Google Scholar 

  68. Mead AJ, Thomson KJ, Morris EC et al (2010) HLA-mismatched unrelated donors are a viable alternate graft source for allogeneic transplantation following alemtuzumab-based reduced-intensity conditioning. Blood 115(25):5147–5153. doi:10.1182/blood-2010-01-265413

    Article  CAS  PubMed  Google Scholar 

  69. Jaskula E, Bochenska J, Kocwin E et al (2012) CMV Serostatus of donor-recipient pairs influences the risk of CMV infection/reactivation in HSCT patients. Bone Marrow Res 2012:375075. doi:10.1155/2012/375075

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hambach L, Stadler M, Dammann E et al (2002) Increased risk of complicated CMV infection with the use of mycophenolate mofetil in allogeneic stem cell transplantation. Bone Marrow Transplant 29(11):903–906. doi:10.1038/sj.bmt.1703583

    Article  CAS  PubMed  Google Scholar 

  71. Nichols WG, Corey L, Gooley T et al (2001) Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood 97(4):867–874

    Article  CAS  PubMed  Google Scholar 

  72. Nakamae H, Kirby KA, Sandmaier BM et al (2009) Effect of conditioning regimen intensity on CMV infection in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 15(6):694–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kim SH, Kee SY, Lee DG et al (2013) Infectious complications following allogeneic stem cell transplantation: reduced-intensity vs. myeloablative conditioning regimens. Transpl Infect Dis 15(1):49–59

    Article  PubMed  Google Scholar 

  74. Kanda Y, Oshima K, Kako S et al (2013) In vivo T-cell depletion with alemtuzumab in allogeneic hematopoietic stem cell transplantation: combined results of two studies on aplastic anemia and HLA-mismatched haploidentical transplantation. Am J Hematol 88(4):294–300. doi:10.1002/ajh.23392

    Article  CAS  PubMed  Google Scholar 

  75. Ruutu T, Ljungman P, Brinch L et al (1997) No prevention of cytomegalovirus infection by anti-cytomegalovirus hyperimmune globulin in seronegative bone marrow transplant recipients. The Nordic BMT Group. Bone Marrow Transplant 19(3):233–236. doi:10.1038/sj.bmt.1700649

    Article  CAS  PubMed  Google Scholar 

  76. Ichihara H, Nakamae H, Hirose A et al (2011) Immunoglobulin prophylaxis against cytomegalovirus infection in patients at high risk of infection following allogeneic hematopoietic cell transplantation. Transplant Proc 43(10):3927–3932. doi:10.1016/j.transproceed.2011.08.104

    Article  CAS  PubMed  Google Scholar 

  77. Ljungman P, de La Camara R, Milpied N et al (2002) Randomized study of valacyclovir as prophylaxis against cytomegalovirus reactivation in recipients of allogeneic bone marrow transplants. Blood 99(8):3050–3056

    Article  CAS  PubMed  Google Scholar 

  78. Venton G, Crocchiolo R, Furst S et al (2014) Risk factors of Ganciclovir-related neutropenia after allogeneic stem cell transplantation: a retrospective monocentre study on 547 patients. Clin Microbiol Infect 20(2):160–166. doi:10.1111/1469-0691.12222

    Article  CAS  PubMed  Google Scholar 

  79. Li CR, Greenberg PD, Gilbert MJ et al (1994) Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 83(7):1971–1979

    CAS  PubMed  Google Scholar 

  80. Lilleri D, Gerna G, Fornara C et al (2009) Human cytomegalovirus-specific T cell reconstitution in young patients receiving T cell-depleted, allogeneic hematopoietic stem cell transplantation. J Infect Dis 199(6):829–836

    Article  PubMed  Google Scholar 

  81. Oshima K, Kanda Y, Kako S et al (2008) Case report: persistent cytomegalovirus (CMV) infection after haploidentical hematopoietic stem cell transplantation using in vivo alemtuzumab: emergence of resistant CMV due to mutations in the UL97 and UL54 genes. J Med Virol 80(10):1769–1775. doi:10.1002/jmv.21277

    Article  CAS  PubMed  Google Scholar 

  82. Busca A (2009) Cytomegalovirus (CMV) infection after hematopoietic stem cell transplantation: significant progress, but many unresolved problems. Expert Opin Biol Ther 9(4):383–385. doi:10.1517/14712590902854448

    Article  PubMed  Google Scholar 

  83. Martin DF, Sierra-Madero J, Walmsley S et al (2002) A controlled trial of valganciclovir as induction therapy for cytomegalovirus retinitis. N Engl J Med 346(15):1119–1126. doi:10.1056/NEJMoa011759

    Article  CAS  PubMed  Google Scholar 

  84. Busca A, de Fabritiis P, Ghisetti V et al (2007) Oral valganciclovir as preemptive therapy for cytomegalovirus infection post allogeneic stem cell transplantation. Transpl Infect Dis 9(2):102–107. doi:10.1111/j.1399-3062.2006.00183.x

    Article  CAS  PubMed  Google Scholar 

  85. Gerna G, Lilleri D, Caldera D et al (2008) Validation of a DNAemia cutoff for preemptive therapy of cytomegalovirus infection in adult hematopoietic stem cell transplant recipients. Bone Marrow Transplant 41(10):873–879

    Article  CAS  PubMed  Google Scholar 

  86. Hakki M, Riddell SR, Storek J et al (2003) Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood 102(8):3060–3067

    Article  CAS  PubMed  Google Scholar 

  87. Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101(2):407–414

    Article  CAS  PubMed  Google Scholar 

  88. Mercorelli B, Sinigalia E, Loregian A et al (2008) Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 18(3):177–210. doi:10.1002/rmv.558

    Article  CAS  PubMed  Google Scholar 

  89. Krause H, Hebart H, Jahn G et al (1997) Screening for CMV-specific T cell proliferation to identify patients at risk of developing late onset CMV disease. Bone Marrow Transplant 19(11):1111–1116. doi:10.1038/sj.bmt.1700801

    Article  CAS  PubMed  Google Scholar 

  90. Einsele H, Hebart H, Kauffmann-Schneider C et al (2000) Risk factors for treatment failures in patients receiving PCR-based preemptive therapy for CMV infection. Bone Marrow Transplant 25(7):757–763. doi:10.1038/sj.bmt.1702226

    Article  CAS  PubMed  Google Scholar 

  91. Perez-Martinez A, Gonzalez-Vicent M, Valentin J et al (2012) Early evaluation of immune reconstitution following allogeneic CD3/CD19-depleted grafts from alternative donors in childhood acute leukemia. Bone Marrow Transplant 47(11):1419–1427

    Article  CAS  PubMed  Google Scholar 

  92. Lang P, Teltschik HM, Feuchtinger T et al (2014) Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol 165(5):688–698. doi:10.1111/bjh.12810

    Article  CAS  PubMed  Google Scholar 

  93. Federmann B, Hagele M, Pfeiffer M et al (2010) Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia 25(1):121–129

    Article  PubMed  Google Scholar 

  94. Marek A, Stern M, Chalandon Y et al (2014) The impact of T-cell depletion techniques on the outcome after haploidentical hematopoietic SCT. Bone Marrow Transplant 49(1):55–61. doi:10.1038/bmt.2013.132

    Article  CAS  PubMed  Google Scholar 

  95. Airoldi I, Bertaina A, Prigione I et al (2015) gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood 125(15):2349–2358. doi:10.1182/blood-2014-09-599423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Scheper W, van Dorp S, Kersting S et al (2013) gammadeltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27(6):1328–1338. doi:10.1038/leu.2012.374

    Article  CAS  PubMed  Google Scholar 

  97. Corrales I, Gimenez E, Solano C et al (2015) Incidence and dynamics of active cytomegalovirus infection in allogeneic stem cell transplant patients according to single nucleotide polymorphisms in donor and recipient CCR5, MCP-1, IL-10, and TLR9 genes. J Med Virol 87(2):248–255. doi:10.1002/jmv.24050

    Article  CAS  PubMed  Google Scholar 

  98. Jablonska A, Paradowska E, Studzinska M et al (2014) Relationship between toll-like receptor 2 Arg677Trp and Arg753Gln and toll-like receptor 4 Asp299Gly polymorphisms and cytomegalovirus infection. Int J Infect Dis 25:11–15. doi:10.1016/j.ijid.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  99. Saadi MI, Yaghobi R, Karimi MH et al (2013) Association of the costimulatory molecule gene polymorphisms and active cytomegalovirus infection in hematopoietic stem cell transplant patients. Mol Biol Rep 40(10):5833–5842. doi:10.1007/s11033-013-2689-x

    Article  CAS  PubMed  Google Scholar 

  100. Bravo D, Solano C, Gimenez E et al (2014) Effect of the IL28B Rs12979860 C/T polymorphism on the incidence and features of active cytomegalovirus infection in allogeneic stem cell transplant patients. J Med Virol 86(5):838–844. doi:10.1002/jmv.23865

    Article  CAS  PubMed  Google Scholar 

  101. Egli A, Levin A, Santer DM et al (2014) Immunomodulatory function of Interleukin 28B during primary infection with cytomegalovirus. J Infect Dis 210(5):717–727. doi:10.1093/infdis/jiu144

    Article  PubMed  Google Scholar 

  102. Goodrich JM, Mori M, Gleaves CA et al (1991) Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med 325(23):1601–1607. doi:10.1056/NEJM199112053252303

    Article  CAS  PubMed  Google Scholar 

  103. Boeckh M, Gooley TA, Myerson D et al (1996) Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood 88(10):4063–4071

    CAS  PubMed  Google Scholar 

  104. Moins-Teisserenc H, Busson M, Scieux C et al (2008) Patterns of cytomegalovirus reactivation are associated with distinct evolutive profiles of immune reconstitution after allogeneic hematopoietic stem cell transplantation. J Infect Dis 198(6):818–826. doi:10.1086/591185

    Article  PubMed  Google Scholar 

  105. Ozdemir E, St John LS, Gillespie G et al (2002) Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood 100(10):3690–3697. doi:10.1182/blood-2002-05-1387

    Article  CAS  PubMed  Google Scholar 

  106. Gratama JW, Brooimans RA, van der Holt B et al (2008) Monitoring cytomegalovirus IE-1 and pp65-specific CD4+ and CD8+ T-cell responses after allogeneic stem cell transplantation may identify patients at risk for recurrent CMV reactivations. Cytometry B Clin Cytom 74(4):211–220. doi:10.1002/cyto.b.20420

    Article  PubMed  CAS  Google Scholar 

  107. Tormo N, Solano C, Benet I et al (2010) Kinetics of cytomegalovirus (CMV) pp65 and IE-1-specific IFNgamma CD8+ and CD4+ T cells during episodes of viral DNAemia in allogeneic stem cell transplant recipients: potential implications for the management of active CMV infection. J Med Virol 82(7):1208–1215. doi:10.1002/jmv.21799

    Article  CAS  PubMed  Google Scholar 

  108. Tormo N, Solano C, Benet I et al (2011) Reconstitution of CMV pp65 and IE-1-specific IFN-gamma CD8(+) and CD4(+) T-cell responses affording protection from CMV DNAemia following allogeneic hematopoietic SCT. Bone Marrow Transplant 46(11):1437–1443. doi:10.1038/bmt.2010.330

    Article  CAS  PubMed  Google Scholar 

  109. Gimenez E, Munoz-Cobo B, Solano C et al (2015) Functional patterns of cytomegalovirus (CMV) pp65 and immediate early-1-specific CD8 T cells that are associated with protection from and control of CMV DNAemia after allogeneic stem cell transplantation. Transpl Infect Dis. doi:10.1111/tid.12391

    Google Scholar 

  110. Gerna G, Percivalle E, Lilleri D et al (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86(Pt 2):275–284. doi:10.1099/vir.0.80474-0

    Article  CAS  PubMed  Google Scholar 

  111. Lilleri D, Gerna G, Fornara C et al (2006) Prospective simultaneous quantification of human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in young recipients of allogeneic hematopoietic stem cell transplants. Blood 108(4):1406–1412. doi:10.1182/blood-2005-11-012864

    Article  CAS  PubMed  Google Scholar 

  112. Lehmann PV, Zhang W (2012) Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol 792:3–23. doi:10.1007/978-1-61779-325-7_1

    Article  CAS  PubMed  Google Scholar 

  113. Ohnishi M, Sakurai T, Heike Y et al (2005) Evaluation of cytomegalovirus-specific T-cell reconstitution in patients after various allogeneic haematopoietic stem cell transplantation using interferon-gamma-enzyme-linked immunospot and human leucocyte antigen tetramer assays with an immunodominant T-cell epitope. Br J Haematol 131(4):472–479. doi:10.1111/j.1365-2141.2005.05800.x

    Article  CAS  PubMed  Google Scholar 

  114. Abate D, Cesaro S, Cofano S et al (2012) Diagnostic utility of human cytomegalovirus-specific T-cell response monitoring in predicting viremia in pediatric allogeneic stem-cell transplant patients. Transplantation 93(5):536–542. doi:10.1097/TP.0b013e31824215db

    Article  PubMed  Google Scholar 

  115. Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96

    Article  CAS  PubMed  Google Scholar 

  116. Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18:561–592. doi:10.1146/annurev.immunol.18.1.561

    Article  CAS  PubMed  Google Scholar 

  117. Lee S, Park JB, Kim EY et al (2011) Monitoring of cytomegalovirus-specific CD8+ T-cell response with major histocompatibility complex pentamers in kidney transplant recipients. Transplant Proc 43(7):2636–2640

    Article  CAS  PubMed  Google Scholar 

  118. Knabel M, Franz TJ, Schiemann M et al (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8(6):631–637

    Article  CAS  PubMed  Google Scholar 

  119. Gratama JW, Boeckh M, Nakamura R et al (2010) Immune monitoring with iTAg MHC Tetramers for prediction of recurrent or persistent cytomegalovirus infection or disease in allogeneic hematopoietic stem cell transplant recipients: a prospective multicenter study. Blood 116(10):1655–1662. doi:10.1182/blood-2010-03-273508

    Article  CAS  PubMed  Google Scholar 

  120. Winston DJ, Young JA, Pullarkat V et al (2008) Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter, randomized, double-blind, placebo-controlled, dose-ranging study. Blood 111(11):5403–5410. doi:10.1182/blood-2007-11-121558

    Article  CAS  PubMed  Google Scholar 

  121. Marty FM, Ljungman P, Papanicolaou GA et al (2011) Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 11(4):284–292. doi:10.1016/S1473-3099(11)70024-X

    Article  CAS  PubMed  Google Scholar 

  122. Marty FM, Winston DJ, Rowley SD et al (2013) CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med 369(13):1227–1236. doi:10.1056/NEJMoa1303688

    Article  CAS  PubMed  Google Scholar 

  123. Chemaly RF, Ullmann AJ, Stoelben S et al (2014) Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 370(19):1781–1789. doi:10.1056/NEJMoa1309533

    Article  CAS  PubMed  Google Scholar 

  124. Knight A, Madrigal AJ, Grace S et al (2010) The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116(12):2164–2172. doi:10.1182/blood-2010-01-255166

    Article  CAS  PubMed  Google Scholar 

  125. Kuijpers TW, Baars PA, Dantin C et al (2008) Human NK cells can control CMV infection in the absence of T cells. Blood 112(3):914–915. doi:10.1182/blood-2008-05-157354

    Article  CAS  PubMed  Google Scholar 

  126. Foley B, Cooley S, Verneris MR et al (2012) Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119(11):2665–2674. doi:10.1182/blood-2011-10-386995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Della Chiesa M, Falco M, Podesta M et al (2012) Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 119(2):399–410. doi:10.1182/blood-2011-08-372003

    Article  CAS  PubMed  Google Scholar 

  128. Casalegno-Garduno R, Schmitt A, Yao J et al (2010) Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother 59(2):195–202

    Article  CAS  PubMed  Google Scholar 

  129. Dolton G, Lissina A, Skowera A et al (2014) Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol 177(1):47–63. doi:10.1111/cei.12339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Clari MA, Munoz-Cobo B, Solano C et al (2012) Performance of the QuantiFERON-cytomegalovirus (CMV) assay for detection and estimation of the magnitude and functionality of the CMV-specific gamma interferon-producing CD8(+) T-cell response in allogeneic stem cell transplant recipients. CVI 19(5):791–796. doi:10.1128/CVI.05633-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Tey SK, Kennedy GA, Cromer D et al (2013) Clinical assessment of anti-viral CD8+ T cell immune monitoring using QuantiFERON-CMV(R) assay to identify high risk allogeneic hematopoietic stem cell transplant patients with CMV infection complications. PLoS One 8(10):e74744. doi:10.1371/journal.pone.0074744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Riddell SR, Walter BA, Gilbert MJ et al (1994) Selective reconstitution of CD8+ cytotoxic T lymphocyte responses in immunodeficient bone marrow transplant recipients by the adoptive transfer of T cell clones. Bone Marrow Transplant 14(Suppl 4):S78–S84

    PubMed  Google Scholar 

  133. Feuchtinger T, Opherk K, Bethge WA et al (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116(20):4360–4367

    Article  CAS  PubMed  Google Scholar 

  134. Peggs KS (2009) Adoptive T cell immunotherapy for cytomegalovirus. Expert Opin Biol Ther 9(6):725–736

    Article  CAS  PubMed  Google Scholar 

  135. Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202(3):379–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Peggs KS, Thomson K, Samuel E et al (2011) Directly Selected cytomegalovirus-reactive donor T Cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis 52(1):49–57

    Article  CAS  PubMed  Google Scholar 

  137. Leen AM, Myers GD, Sili U et al (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12(10):1160–1166

    Article  CAS  PubMed  Google Scholar 

  138. Gerdemann U, Keirnan JM, Katari UL et al (2012) Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 20(8):1622–1632. doi:10.1038/mt.2012.130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Hanley PJ, Cruz CR, Savoldo B et al (2009) Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114(9):1958–1967. doi:10.1182/blood-2009-03-213256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Maus MV, Fraietta JA, Levine BL et al (2014) Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 32:189–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Einsele H (2002) Immunotherapy for CMV infection. Cytotherapy 4(5):435–436. doi:10.1080/146532402320776080

    Article  CAS  PubMed  Google Scholar 

  142. Hill GR, Tey SK, Beagley L et al (2010) Successful immunotherapy of HCMV disease using virus-specific T cells expanded from an allogeneic stem cell transplant recipient. Am J Transplant 10(1):173–179. doi:10.1111/j.1600-6143.2009.02872.x

    Article  CAS  PubMed  Google Scholar 

  143. Blyth E, Clancy L, Simms R et al (2013) Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood 121(18):3745–3758. doi:10.1182/blood-2012-08-448977

    Article  CAS  PubMed  Google Scholar 

  144. Clancy LE, Blyth E, Simms RM et al (2013) Cytomegalovirus-specific cytotoxic T lymphocytes can be efficiently expanded from granulocyte colony-stimulating factor-mobilized hemopoietic progenitor cell products ex vivo and safely transferred to stem cell transplantation recipients to facilitate immune reconstitution. Biol Blood Marrow Transplant 19(5):725–734. doi:10.1016/j.bbmt.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  145. Saglio F, Hanley PJ, Bollard CM (2014) The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy 16(2):149–159. doi:10.1016/j.jcyt.2013.11.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Ramirez N, Beloki L, Ciaurriz M et al (2014) Impact of T cell selection methods in the success of clinical adoptive immunotherapy. Cell Mol Life Sci 71(7):1211–1224. doi:10.1007/s00018-013-1463-5

    Article  CAS  PubMed  Google Scholar 

  147. Meisel R, Brockers S, Heseler K et al (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25(4):648–654. doi:10.1038/leu.2010.310

    Article  CAS  PubMed  Google Scholar 

  148. Meisel R, Heseler K, Nau J et al (2014) Cytomegalovirus infection impairs immunosuppressive and antimicrobial effector functions of human multipotent mesenchymal stromal cells. Mediators Inflamm 2014:898630. doi:10.1155/2014/898630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant (PI10/00136) from the Fondo de Investigaciones Sanitarias (FIS) granted by the Instituto de Salud Carlos III (ISCIII) issued to E. Olavarría. M. Ciáurriz is a recipient of PFIS Predoctoral Fellowship from ISCIII. E. Pérez-Valderrama is a recipient of the MINECO fellowship from the Ministerio de Educación. M. Lachén is a recipient of Tecnólogos Fellowship from the Gobierno de Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Ramírez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciáurriz, M., Zabalza, A., Beloki, L. et al. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell. Mol. Life Sci. 72, 4049–4062 (2015). https://doi.org/10.1007/s00018-015-1986-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1986-z

Keywords

Navigation