Skip to main content

Advertisement

Log in

Na+–H+ exchanger-1 (NHE1) regulation in kidney proximal tubule

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The ubiquitously expressed plasma membrane Na+–H+ exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na+ transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na+–H+ exchanger as a kidney cell survival factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. NHE3 is the transporter responsible for the activity originally detected in the apical membranes preparations from rat proximal tubules.

  2. The K m for intracellular H+ in pH units is sometimes referred to as pK i. Note that ‘pK i’ is not defined as the protonation state of titratable groups in the protein.

  3. Another determinant, Gly346 at the extracellular end of TM9, is hypothesized to be in three-dimensional proximity to the clustered determinants in TM4 [24].

Abbreviations

AE2:

Anion exchange protein 2

AKI:

Acute kidney injury

CHP1:

Calcineurin-homologous protein 1

CKD:

Chronic kidney disease

ERM:

Ezrin/radixin/moesin

ESRD:

End stage renal disease

JAK2:

Janus kinase 2

LC-CoA:

Long chain fatty acyl-CoA

MDCK:

Madin-Darby canine kidney cell line

NaPi-IIa:

Na+-phosphate co-transporter

NBC:

Na+/HCO3 co-transporter

NCX1:

Na+–Ca2+ exchanger 1

NHE:

Na+–H+ exchanger

NIK:

Nck (non-catalytic region of tyrosine kinase adaptor protein 1)-interacting kinase

NKCC1:

Na+/K+/Cl co-transporter 1

pHi :

Intracellular pH

PI(4,5)P2:

Phosphatidylinositol 4,5-bisphosphate

ROCK1:

Rho-associated, coiled-coil-containing protein kinase 1

RVI:

Regulatory volume increase

SGK1:

Serum and glucocorticoid-regulated kinase 1

SGLT:

Sodium-glucose co-transporter

TM:

Transmembrane-spanning domain

References

  1. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–502

    CAS  PubMed  Google Scholar 

  2. Harold FM, Papineau D (1972) Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membr Biol 8:45–62

    CAS  PubMed  Google Scholar 

  3. West IC, Mitchell P (1974) Proton/sodium ion antiport in Escherichia coli. Biochem J 144:87–90

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154:597–604

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Sardet C, Franchi A, Pouyssegur J (1989) Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280

    CAS  PubMed  Google Scholar 

  6. Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 466:61–76

    CAS  PubMed  Google Scholar 

  7. Donowitz M, Ming TC, Fuster D (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med 34:236–251

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Tse CM, Brant SR, Walker MS, Pouyssegur J, Donowitz M (1992) Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 267:9340–9346

    CAS  PubMed  Google Scholar 

  9. Pizzonia JH, Biemesderfer D, Abu-Alfa AK, Wu MS, Exner M, Isenring P, Igarashi P, Aronson PS (1998) Immunochemical characterization of Na+/H+ exchanger isoform NHE4. Am J Physiol 275:F510–F517

    CAS  PubMed  Google Scholar 

  10. Klanke CA, Su YR, Callen DF, Wang Z, Meneton P, Baird N, Kandasamy RA, Orlowski J, Otterud BE, Leppert M et al (1995) Molecular cloning and physical and genetic mapping of a novel human Na+/H+ exchanger (NHE5/SLC9A5) to chromosome 16q22.1. Genomics 25:615–622

    CAS  PubMed  Google Scholar 

  11. Baird NR, Orlowski J, Szabo EZ, Zaun HC, Schultheis PJ, Menon AG, Shull GE (1999) Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain. J Biol Chem 274:4377–4382

    CAS  PubMed  Google Scholar 

  12. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    CAS  PubMed  Google Scholar 

  13. Nygaard EB, Lagerstedt JO, Bjerre GP, Shi B, Budamagunta M, Poulsen KA, Meinild S, Rigor RR, Voss JC, Cala PM, Pedersen SF (2010) Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J Biol Chem 286:634–648

    PubMed Central  PubMed  Google Scholar 

  14. Padan E, Kozachkov L, Herz K, Rimon A (2009) NhaA crystal structure: functional-structural insights. J Exp Biol 212:1593–1603

    CAS  PubMed  Google Scholar 

  15. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239

    CAS  PubMed  Google Scholar 

  16. Ye G, Chen C, Han D, Xiong X, Kong Y, Wan B, Yu L (2006) Cloning of a novel human NHEDC1 (Na+/H+ exchanger like domain containing 1) gene expressed specifically in testis. Mol Biol Rep 33:175–180

    CAS  PubMed  Google Scholar 

  17. Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW (2008) Characterization of the sodium/hydrogen exchanger NHA2. JASN 19:1547–1556

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, Rho J (2008) NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun 369:320–326

    CAS  PubMed  Google Scholar 

  19. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci USA 104:9325–9330

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Barber DL (1991) Mechanisms of receptor-mediated regulation of Na-H exchange. Cell Signal 3:387–397

    CAS  PubMed  Google Scholar 

  21. Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    CAS  PubMed  Google Scholar 

  22. Hisamitsu T, Yamada K, Nakamura TY, Wakabayashi S (2007) Functional importance of charged residues within the putative intracellular loops in pH regulation by Na+/H+ exchanger NHE1. FEBS J 274:4326–4335

    CAS  PubMed  Google Scholar 

  23. Yu FH, Shull GE, Orlowski J (1993) Functional properties of the rat Na/H exchanger NHE-2 isoform expressed in Na/H exchanger-deficient Chinese hamster ovary cells. J Biol Chem 268:25536–25541

    CAS  PubMed  Google Scholar 

  24. Wakabayashi S, Hisamitsu T, Pang TX, Shigekawa M (2003) Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J Biol Chem 278:43580–43585

    CAS  PubMed  Google Scholar 

  25. Busch S, Burckhardt BC, Siffert W (1995) Expression of the human sodium/proton exchanger NHE-1 in Xenopus laevis oocytes enhances sodium/proton exchange activity and establishes sodium/lithium countertransport. Pflugers Arch 429:859–869

    CAS  PubMed  Google Scholar 

  26. Zerbini G, Maestroni A, Breviario D, Mangili R, Casari G (2003) Alternative splicing of NHE-1 mediates Na-Li countertransport and associates with activity rate. Diabetes 52:1511–1518

    CAS  PubMed  Google Scholar 

  27. Masereel B, Pochet L, Laeckmann D (2003) An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem 38:547–554

    CAS  PubMed  Google Scholar 

  28. Parker MD, Musa-Aziz R, Rojas JD, Choi I, Daly CM, Boron WF (2008) Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity. J Biol Chem 283:12777–12788

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Orlowski J (1993) Heterologous expression and functional properties of amiloride high affinity (NHE-1) and low affinity (NHE-3) isoforms of the rat Na/H exchanger. J Biol Chem 268:16369–16377

    CAS  PubMed  Google Scholar 

  30. Tse CM, Levine SA, Yun CH, Montrose MH, Little PJ, Pouyssegur J, Donowitz M (1993) Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem 268:11917–11924

    CAS  PubMed  Google Scholar 

  31. Bookstein C, Musch MW, DePaoli A, Xie Y, Rabenau K, Villereal M, Rao MC, Chang EB (1996) Characterization of the rat Na+/H+ exchanger isoform NHE4 and localization in rat hippocampus. Am J Physiol 271:C1629–C1638

    CAS  PubMed  Google Scholar 

  32. Szabo EZ, Numata M, Shull GE, Orlowski J (2000) Kinetic and pharmacological properties of human brain Na(+)/H(+) exchanger isoform 5 stably expressed in Chinese hamster ovary cells. J Biol Chem 275:6302–6307

    CAS  PubMed  Google Scholar 

  33. Attaphitaya S, Park K, Melvin JE (1999) Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 274:4383–4388

    CAS  PubMed  Google Scholar 

  34. Pedersen SF, King SA, Nygaard EB, Rigor RR, Cala PM (2007) NHE1 inhibition by amiloride- and benzoyl guanidine-type compounds: inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity. J Biol Chem 282:19716–19727

    CAS  PubMed  Google Scholar 

  35. Touret N, Poujeol P, Counillon L (2001) Second-site revertants of a low-sodium-affinity mutant of the Na+/H+ exchanger reveal the participation of TM4 into a highly constrained sodium-binding site. Biochemistry 40:5095–5101

    CAS  PubMed  Google Scholar 

  36. Counillon L, Franchi A, Pouyssegur J (1993) A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci USA 90:4508–4512

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Counillon L, Noel J, Reithmeier RA, Pouyssegur J (1997) Random mutagenesis reveals a novel site involved in inhibitor interaction within the fourth transmembrane segment of the Na+/H+ exchanger-1. Biochemistry 36:2951–2959

    CAS  PubMed  Google Scholar 

  38. Noël J, Germain D, Vadnais J (2003) Glutamate 346 of human Na+–-H+ exchanger NHE1 is crucial for modulating both the affinity for Na+ and the interaction with amiloride derivatives. Biochemistry 42:15361–15368

    PubMed  Google Scholar 

  39. Khadilkar A, Iannuzzi P, Orlowski J (2001) Identification of sites in the second exomembrane loop and ninth transmembrane helix of the mammalian Na+/H+ exchanger important for drug recognition and cation translocation. J Biol Chem 276:43792–43800

    CAS  PubMed  Google Scholar 

  40. Landau M, Herz K, Padan E, Ben-Tal N (2007) Model structure of the Na+/H+ exchanger 1 (NHE1): functional and clinical implications. J Biol Chem 282:37854–37863

    CAS  PubMed  Google Scholar 

  41. Fafournoux P, Noel J, Pouyssegur J (1994) Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 269:2589–2596

    CAS  PubMed  Google Scholar 

  42. Hisamitsu T, Pang T, Shigekawa M, Wakabayashi S (2004) Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation. Biochemistry 43:11135–11143

    CAS  PubMed  Google Scholar 

  43. Moncoq K, Kemp G, Li X, Fliegel L, Young HS (2007) Dimeric structure of human Na+/H+ exchanger isoform 1 over-produced in saccharomyces cerevisiae. J Biol Chem 283:4145–4154

    PubMed  Google Scholar 

  44. Hisamitsu T, Ammar YB, Nakamura TY, Wakabayashi S (2006) Dimerization is crucial for the function of the Na+/H+ exchanger NHE1. Biochemistry 45:13346–13355

    CAS  PubMed  Google Scholar 

  45. Fuster D, Moe OW, Hilgemann DW (2008) Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J Gen Physiol 132:465–480

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Lee C, Kang HJ, von BC, Newstead S, Uzdavinys P, Dotson DL, Iwata S, Beckstein O, Cameron AD, Drew D (2013) A two-domain elevator mechanism for sodium/proton antiport. Nature 501:573–577

  47. Schelling JR, Abu Jawdeh BG (2008) Regulation of cell survival by Na+/H+ exchanger-1 (NHE1). Am J Physiol Renal Physiol 295:F625–F632

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Yi YH, Ho PY, Chen TW, Lin WJ, Gukassyan V, Tsai TH, Wang DW, Lew TS, Tang CY, Lo SJ, Chen TY, Kao FJ, Lin CH (2009) Membrane targeting and coupling of NHE1-integrin αIIbβ3-NCX1 by lipid rafts following integrin-ligand interactions trigger Ca2+ oscillations. J Biol Chem 284:3855–3864

    CAS  PubMed  Google Scholar 

  49. Mason MJ, Smith JD, Garcia-Soto JJ, Grinstein S (1989) Internal pH-sensitive site couples Cl(-)HCO3 exchange to Na+ -H+ antiport in lymphocytes. Am J Physiol 256:C428–C433

    CAS  PubMed  Google Scholar 

  50. Wada M, Miyakawa S, Shimada A, Okada N, Yamamoto A, Fujita T (2005) Functional linkage of H+/peptide transporter PEPT2 and Na+/H+ exchanger in primary cultures of astrocytes from mouse cerebral cortex. Brain Res 1044:33–41

    CAS  PubMed  Google Scholar 

  51. Rocha MA, Crockett DP, Wong LY, Richardson JR, Sonsalla PK (2008) Na(+)/H(+) exchanger inhibition modifies dopamine neurotransmission during normal and metabolic stress conditions. J Neurochem 106:231–243

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Hwang IK, Yoo KY, An SJ, Li H, Lee CH, Choi JH, Lee JY, Lee BH, Kim YM, Kwon YG, Won MH (2008) Late expression of Na(+)/H(+) exchanger 1 (NHE1) and neuroprotective effects of NHE inhibitor in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 212:314–323

    CAS  PubMed  Google Scholar 

  53. Franchi A, Perucca-Lostanlen D, Pouyssegur J (1986) Functional expression of a human Na+/H+ antiporter gene transfected into antiporter-deficient mouse L cells. Proc Natl Acad Sci USA 83:9388–9392

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Biemesderfer D, Reilly RF, Exner M, Igarashi P, Aronson PS (1992) Immunocytochemical characterization of Na+–-H+ exchanger isoform NHE-1 in rabbit kidney. Am J Physiol 263:F833–F840

    CAS  PubMed  Google Scholar 

  55. Peti-Peterdi J, Chambrey R, Bebok Z, Biemesderfer D, St John PL, Abrahamson DR, Warnock DG, Bell PD (2000) Macula densa Na(+)/H(+) exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am J Physiol Renal Physiol 278:F452–F463

    CAS  PubMed  Google Scholar 

  56. Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW (1995) Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 48:1206–1215

    CAS  PubMed  Google Scholar 

  57. Chambrey R, St John PL, Eladari D, Quentin F, Warnock DG, Abrahamson DR, Podevin RA, Paillard M (2001) Localization and functional characterization of Na+/H+ exchanger isoform NHE4 in rat thick ascending limbs. Am J Physiol 281:F707–F717

    CAS  Google Scholar 

  58. Chambrey R, Warnock DG, Podevin RA, Bruneval P, Mandet C, Belair MF, Bariety J, Paillard M (1998) Immunolocalization of the Na+/H+ exchanger isoform NHE2 in rat kidney. Am J Physiol 275:F379–F386

    CAS  PubMed  Google Scholar 

  59. Coupaye-Gerard B, Bookstein C, Duncan P, Chen XY, Smith PR, Musch M, Ernst SA, Chang EB, Kleyman TR (1996) Biosynthesis and cell surface delivery of the NHE1 isoform of Na+/H+ exchanger in A6 cells. Am J Physiol 271:C1639–C1645

    CAS  PubMed  Google Scholar 

  60. Cavet ME, Akhter S, Murtazina R, de Medina FS, Tse CM, Donowitz M (2001) Half-lives of plasma membrane Na+/H+ exchangers NHE1-3: plasma membrane NHE2 has a rapid rate of degradation. Am J Physiol 281:C2039–C2048

    CAS  Google Scholar 

  61. Su X, Pang TX, Wakabayashi S, Shigekawa M (2003) Evidence for involvement of the putative first extracellular loop in differential volume sensitivity of the Na+/H+ exchangers NHE1 and NHE2. Biochemistry 42:1086–1094

    CAS  PubMed  Google Scholar 

  62. Simonin A, Fuster D (2010) Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem 285:38293–38303

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Damkier HH, Prasad V, Hubner CA, Praetorius J (2009) Nhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2-null mice. Am J Physiol Cell Physiol 296:C1291–C1300

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Pizzonia JH, Ransom BR, Pappas CA (1996) Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. J Neurosci Res 44:191–198

    CAS  PubMed  Google Scholar 

  65. Rutherford PA, Pizzonia JH, Biemesderfer D, Abu-Alfa A, Reilly R, Aronson PS (1997) Expression of Na+–-H+ exchanger isoforms NHE1 and NHE3 in kidney and blood cells of rabbit and rat. Exp Nephrol 5:490–497

    CAS  PubMed  Google Scholar 

  66. Fliegel L, Dyck JR, Wang H, Fong C, Haworth RS (1993) Cloning and analysis of the human myocardial Na+/H+ exchanger. Mol Cell Biochem 125:137–143

    CAS  PubMed  Google Scholar 

  67. Woo AL, James PF, Lingrel JB (2002) Roles of the Na, K-ATPase alpha4 isoform and the Na+/H+ exchanger in sperm motility. Mol Reprod Dev 62:348–356

    CAS  PubMed  Google Scholar 

  68. Lee BL, Sykes BD, Fliegel L (2011) Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach. Biochem Cell Biol 89:189–199

    CAS  PubMed  Google Scholar 

  69. Schushan M, Landau M, Padan E, Ben-Tal N (2011) Two conflicting NHE1 model structures: compatibility with experimental data and implications for the transport mechanism. J Biol Chem 286:le9

  70. Counillon L, Pouyssegur J, Reithmeier RA (1994) The Na+/H+ exchanger NHE-1 possesses N- and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry 33:10463–10469

    CAS  PubMed  Google Scholar 

  71. Shrode LD, Gan BS, D’Souza SJ, Orlowski J, Grinstein S (1998) Topological analysis of NHE1, the ubiquitous Na+/H+ exchanger using chymotryptic cleavage. Am J Physiol 275:C431–C439

    CAS  PubMed  Google Scholar 

  72. Wakabayashi S, Hisamitsu T, Pang TX, Shigekawa M (2003) Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J Biol Chem 278:11828–11835

    CAS  PubMed  Google Scholar 

  73. Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J, Grinstein S (2000) Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:213–224

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Wakabayashi S, Nakamura TY, Kobayashi S, Hisamitsu T (2010) Novel phorbol ester-binding motif mediates hormonal activation of Na+/H+ exchanger. J Biol Chem 285:26652–26661

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR (2011) Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 286:42435–42445

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Khan S, Abu Jawdeh BG, Goel M, Schilling WP, Parker MD, Puchowicz MA, Yadav SP, Harris RC, El-Meanawy A, Hoshi M, Shinlapawittayatorn K, Deschenes I, Ficker E, Schelling JR (2014) Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. J Clin Invest 124:1057–1068

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Shimada-Shimizu N, Hisamitsu T, Nakamura TY, Hirayama N, Wakabayashi S (2014) Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds. Mol Pharmacol 85:18–28

    PubMed  Google Scholar 

  78. Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci USA 101:10482–10487

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Bullis BL, Li XJ, Rieder CV, Singh DN, Berthiaume LG, Fliegel L (2002) Properties of the Na+/H+ exchanger protein—detergent-resistant aggregation and membrane microdistribution. Eur J Biochem 269:4887–4895

    CAS  PubMed  Google Scholar 

  80. Bourguignon LYW, Singleton PA, Diedrich F, Stern R, Gilad E (2004) CD44 interaction with Na+–-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279:26991–27007

    CAS  PubMed  Google Scholar 

  81. Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci USA 106:9256–9261

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell 6:1425–1436

    CAS  PubMed  Google Scholar 

  83. Wu KL, Khan S, Lakhe-Reddy S, Jarad G, Mukherjee A, Obejero-Paz CA, Konieczkowski M, Sedor JR, Schelling JR (2004) The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J Biol Chem 279:26280–26286

    CAS  PubMed  Google Scholar 

  84. Khan S, Wu KL, Sedor JR, Abu Jawdeh BG, Schelling JR (2006) The NHE1 Na+/H+ exchanger regulates cell survival by activating and targeting ezrin to specific plasma membrane domains. Cell Mol Biol 52:115–121

    CAS  PubMed  Google Scholar 

  85. Ramez M, Blot-Chabaud M, Cluzeaud F, Chanan S, Patterson M, Walensky LD, Marfatia S, Baines AJ, Chasis JA, Conboy JG, Mohandas N, Gascard P (2003) Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 63:1321–1337

    CAS  PubMed  Google Scholar 

  86. Nunomura W, Denker SP, Barber DL, Takakuwa Y, Gascard P (2012) Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na(+)/H(+) exchanger isoform 1). Biochem J 446:427–435

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Lin X, Barber DL (1996) A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc Natl Acad Sci USA 93:12631–12636

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Pang T, Su X, Wakabayashi S, Shigekawa M (2001) Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers. J Biol Chem 276:17367–17372

    CAS  PubMed  Google Scholar 

  89. Pang TX, Hisamitsu T, Mori H, Shigekawa M, Wakabayashi S (2004) Role of calcineurin B homologous protein in pH regulation by the Na+/H+ exchanger 1: tightly bound Ca2+ ions as important structural elements. Biochemistry 43:3628–3636

    CAS  PubMed  Google Scholar 

  90. Bertrand B, Wakabayashi S, Ikeda T, Pouyssegur J, Shigekawa M (1994) The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem 269:13703–13709

    CAS  PubMed  Google Scholar 

  91. Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M (1994) Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H(+)-sensitive and Ca2+ regulation-defective. J Biol Chem 269:13710–13715

    CAS  PubMed  Google Scholar 

  92. Wakabayashi S, Ikeda T, Iwamoto T, Pouyssegur J, Shigekawa M (1997) Calmodulin-binding autoinhibitory domain controls “pH-sensing” in the Na+/H+ exchanger NHE1 through sequence-specific interaction. Biochemistry 36:12854–12861

    CAS  PubMed  Google Scholar 

  93. Garnovskaya MN, Mukhin YV, Vlasova TM, Raymond JR (2003) Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 278:16908–16915

    CAS  PubMed  Google Scholar 

  94. Wakabayashi S, Fafournoux P, Sardet C, Pouyssegur J (1992) The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H+-sensing”. Proc Natl Acad Sci USA 89:2424–2428

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Bianchini L, Kapus A, Lukacs G, Wasan S, Wakabayashi S, Pouyssegur J, Yu FH, Orlowski J, Grinstein S (1995) Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am J Physiol 269:C998–C1007

    CAS  PubMed  Google Scholar 

  96. Sardet C, Fafournoux P, Pouyssegur J (1991) α-thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 266:19166–19171

    CAS  PubMed  Google Scholar 

  97. Odunewu A, Fliegel L (2013) Acidosis mediated regulation of the NHE1 isoform of the Na+/H+ exchanger in renal cells. Am J Physiol Renal Physiol 305:F370–F381

    CAS  PubMed  Google Scholar 

  98. Bianchini L, L’Allemain G, Pouyssegur J (1997) The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272:271–279

    CAS  PubMed  Google Scholar 

  99. Wang H, Silva NL, Lucchesi PA, Haworth R, Wang K, Michalak M, Pelech S, Fliegel L (1997) Phosphorylation and regulation of the Na+/H+ exchanger through mitogen-activated protein kinase. Biochemistry 36:9151–9158

    CAS  PubMed  Google Scholar 

  100. Pedersen SF, Darborg BV, Rentsch ML, Rasmussen M (2006) Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na(+)/H(+) exchanger, NHE1. Arch Biochem Biophys 462:195–201

    PubMed  Google Scholar 

  101. Takahashi E, Abe J, Gallis B, Aebersold R, Spring DJ, Krebs EG, Berk BC (1999) p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J Biol Chem 274:20206–20214

    CAS  PubMed  Google Scholar 

  102. Yan WH, Nehrke K, Choi J, Barber DL (2001) The Nck-interacting kinase (NIK) phosphorylates the Na+–-H+ exchanger NHE1 and regulates NHE1 activation by platelet-derived growth factor. J Biol Chem 276:31349–31356

    CAS  PubMed  Google Scholar 

  103. Tominaga T, Ishizaki T, Narumiya S, Barber DL (1998) p160ROCK mediates RhoA activation of Na-H exchange. EMBO J 17:4712–4722

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Snabaitis AK, Cuello F, Avkiran M (2008) Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1. Circ Res 103:881–890

    CAS  PubMed  Google Scholar 

  105. Meima ME, Webb BA, Witkowska HE, Barber DL (2009) The sodium-hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factors. J Biol Chem 284:26666–26675

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Voelkl J, Pasham V, Ahmed MS, Walker B, Szteyn K, Kuhl D, Metzler B, Alesutan I, Lang F (2013) Sgk1-dependent stimulation of cardiac Na/H exchanger Nhe1 by dexamethasone. Cell Physiol Biochem 32:25–38

    CAS  PubMed  Google Scholar 

  107. Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW (1983) Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304:645–648

    CAS  PubMed  Google Scholar 

  108. Besson P, Fernandez-Rachubinski F, Yang W, Fliegel L (1998) Regulation of Na+/H+ exchanger gene expression: mitogenic stimulation increases NHE1 promoter activity. Am J Physiol 274:C831–C839

    CAS  PubMed  Google Scholar 

  109. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278:44645–44649

    CAS  PubMed  Google Scholar 

  110. Rao GN, Sardet C, Pouyssegur J, Berk BC (1992) Na+/H+ antiporter gene expression increases during retinoic acid-induced granulocytic differentiation of HL60 cells. J Cell Physiol 151:361–366

    CAS  PubMed  Google Scholar 

  111. Wang H, Singh D, Fliegel L (1997) The Na+/H+ antiporter potentiates growth and retinoic acid-induced differentiation of P19 embryonal carcinoma cells. J Biol Chem 272:26545–26549

    CAS  PubMed  Google Scholar 

  112. Tominaga T, Barber DL (1998) Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 9:2287–2303

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Schwartz MA, Lechene C, Ingber DE (1991) Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc Natl Acad Sci USA 88:7849–7853

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Grinstein S, Woodside M, Sardet C, Pouyssegur J, Rotin D (1992) Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J Biol Chem 267:23823–23828

    CAS  PubMed  Google Scholar 

  116. McSwine RL, Li J, Villereal ML (1996) Examination of the role for Ca2+ in regulation and phosphorylation of the Na+/H+ antiporter NHE1 via mitogen and hypertonic stimulation. J Cell Physiol 168:8–17

    CAS  PubMed  Google Scholar 

  117. Baumgartner M, Patel H, Barber DL (2004) Na+/H+ exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Cell Physiol 287:C844–C850

    CAS  PubMed  Google Scholar 

  118. Odunewu-Aderibigbe A, Fliegel L (2014) The Na(+)/H(+) exchanger and pH regulation in the heart. IUBMB Life 66:679–685

    CAS  PubMed  Google Scholar 

  119. Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    CAS  PubMed  Google Scholar 

  121. Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol 281:C1196–C1204

    CAS  Google Scholar 

  122. Counis MF, Torriglia A (2006) Acid DNases and their interest among apoptotic endonucleases. Biochimie 88:1851–1858

    CAS  PubMed  Google Scholar 

  123. Ruffin VA, Salameh AI, Boron WF, Parker MD (2014) Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol 5:43

    PubMed Central  PubMed  Google Scholar 

  124. Shi Y, Kim D, Caldwell M, Sun D (2013) The role of Na(+)/H(+) exchanger isoform 1 in inflammatory responses: maintaining H(+) homeostasis of immune cells. Adv Exp Med Biol 961:411–418

    CAS  PubMed  Google Scholar 

  125. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE (1995) Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6:1349–1365

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Ludwig FT, Schwab A, Stock C (2013) The Na(+)/H(+)-exchanger (NHE1) generates pH nanodomains at focal adhesions. J Cell Physiol 228:1351–1358

    CAS  PubMed  Google Scholar 

  127. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT, Critchley DR, Kelly MJ, Jacobson MP, Barber DL (2008) Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci USA 105:14436–14441

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol 183:865–879

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Greco MR, Antelmi E, Busco G, Guerra L, Rubino R, Casavola V, Reshkin SJ, Cardone RA (2014) Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep 31:940–946

    CAS  PubMed  Google Scholar 

  131. Lin Y, Wang J, Jin W, Wang L, Li H, Ma L, Li Q, Pang T (2012) NHE1 mediates migration and invasion of HeLa cells via regulating the expression and localization of MT1-MMP. Cell Biochem Funct 30:41–46

    CAS  PubMed  Google Scholar 

  132. Jacobsen C, Kragh-Hansen U, Sheikh MI (1986) Na+ -H+ exchange in luminal-membrane vesicles from rabbit proximal convoluted and straight tubules in response to metabolic acidosis. Biochem J 239:411–416

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Baum M (1989) Axial heterogeneity of rabbit proximal tubule luminal H+ and basolateral HCO3 transport. Am J Physiol 256:F335–F341

    CAS  PubMed  Google Scholar 

  134. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 105:1141–1146

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Forster IC, Hernando N, Biber J, Murer H (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med 34:386–395

    CAS  PubMed  Google Scholar 

  136. Spring KR, Giebisch G (1977) Kinetics of Na+ transport in Necturus proximal tubule. J Gen Physiol 70:307–328

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413

    CAS  PubMed  Google Scholar 

  138. Holthouser K, Mandal A, Merchant ML, Schelling JR, Delamere NA, Valdes RR Jr, Tyagi SC, Lederer ED, Khundmiri SJ (2010) Ouabain stimulates Na–K ATPase through sodium hydrogen exchanger-1 (NHE-1) dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 299:F77–F90

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Garciarena CD, Ma YL, Swietach P, Huc L, Vaughan-Jones RD (2013) Sarcolemmal localisation of Na+/H+ exchange and Na+ -HCO3− co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes. J Physiol 591:2287–2306

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U (2005) Functional role of Na+ -HCO3− cotransport in migration of transformed renal epithelial cells. J Physiol 568:445–458

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Alexander RT, Grinstein S (2006) Na/H exchangers and the regulation of volume. Acta Physiol (Oxf) 187:159–167

    CAS  Google Scholar 

  142. Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    CAS  PubMed  Google Scholar 

  143. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Kaplan MR, Plotkin MD, Lee WS, Xu ZC, Lytton J, Hebert SC (1996) Apical localization of the Na-K-Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49:40–47

    CAS  PubMed  Google Scholar 

  145. Stuart-Tilley AK, Shmukler BE, Brown D, Alper SL (1998) Immunolocalization and tissue-specific splicing of AE2 anion exchanger in mouse kidney. JASN 9:946–959

    CAS  PubMed  Google Scholar 

  146. Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J (1994) Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem 269:23544–23552

    CAS  PubMed  Google Scholar 

  147. Soleimani M, Watts BA III, Singh G, Good DW (1998) Effect of long-term hyperosmolality on the Na+/H+ exchanger isoform NHE-3 in LLC-PK1 cells. Kidney Int 53:423–431

    CAS  PubMed  Google Scholar 

  148. Krump E, Nikitas K, Grinstein S (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem 272:17303–17311

    CAS  PubMed  Google Scholar 

  149. Wu KL, Khan S, Lakhe-Reddy S, Wang LM, Jarad G, Miller RT, Konieczkowski M, Brown AM, Sedor JR, Schelling JR (2003) Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger. Am J Physiol Renal Physiol 284:F829–F839

    CAS  PubMed  Google Scholar 

  150. Grinstein S, Clarke CA, Rothstein A (1983) Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J Gen Physiol 82:619–638

    CAS  PubMed  Google Scholar 

  151. Fukushima T, Waddell TK, Grinstein S, Goss GG, Orlowski J, Downey GP (1996) Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases. J Cell Biol 132:1037–1052

    CAS  PubMed  Google Scholar 

  152. Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351

    CAS  PubMed  Google Scholar 

  153. Cox GA, Lutz CM, Yang CL, Biemesderfer D, Bronson RT, Fu A, Aronson PS, Noebels JL, Frankel WN (1997) Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell 91:139–148

    CAS  PubMed  Google Scholar 

  154. Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, Shull GE, Scott WJ (1999) Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J Physiol 276:C788–C795

    CAS  PubMed  Google Scholar 

  155. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285

    CAS  PubMed  Google Scholar 

  156. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23:264–266

    CAS  PubMed  Google Scholar 

  157. Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, Jonveaux P, Roux AF, Claustres M, Fliegel L, Koenig M (2015) Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet 24:463–470

    CAS  PubMed  Google Scholar 

  158. Wessels D, Lusche DF, Scherer A, Kuhl S, Myre MA, Soll DR (2014) Huntingtin regulates Ca chemotaxis and K-facilitated cAMP chemotaxis, in conjuction with the monovalent cation/H exchanger Nhe1, in a model developmental system: insights into its possible role in Huntingtons disease. Dev Biol 394:24–38

    CAS  PubMed  Google Scholar 

  159. Risdon RA, Sloper JC, De Wardener HE (1968) Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–366

    CAS  PubMed  Google Scholar 

  160. Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal disease. Hum Pathol 1:631–641

    CAS  PubMed  Google Scholar 

  161. Bohle A, Mackensen-Haen S, von Gise H (1987) Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol 7:421–433

    CAS  PubMed  Google Scholar 

  162. Schelling JR, Nkemere N, Kopp JB, Cleveland RP (1998) Fas-dependent fratricidal apoptosis is a mechanism of tubular epithelial cell deletion in chronic renal failure. Lab Invest 78:813–824

    CAS  PubMed  Google Scholar 

  163. Manucha W, Carrizo L, Ruete C, Valles PG (2007) Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction. BJU Int 100:191–198

  164. Bocanegra V, Gil Lorenzo AF, Cacciamani V, Benardon ME, Costantino VV, Valles PG (2014) RhoA and MAPKinase signal transduction pathways regulate NHE1 Na+/H+ exchanger-dependent proximal tubule cell apoptosis following mechanical stretch. Am J Physiol Renal Physiol 307:F881–F889

    CAS  PubMed  Google Scholar 

  165. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    CAS  PubMed  Google Scholar 

  166. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    CAS  PubMed  Google Scholar 

  167. Feng Z, Tang L, Wu L, Cui S, Hong Q, Cai G, Wu D, Fu B, Wei R, Chen X (2014) Na/H exchanger-1 reduces podocyte injury caused by endoplasmic reticulum stress via autophagy activation. Lab Invest 94:439–454

    CAS  PubMed  Google Scholar 

  168. Lupescu A, Geiger C, Zahir N, Aberle S, Lang PA, Kramer S, Wesselborg S, Kandolf R, Foller M, Lang F, Bock CT (2009) Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol Biochem 23:211–220

    CAS  PubMed  Google Scholar 

  169. Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS, Goligorsky MS (2004) Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol 15:2391–2403

    CAS  PubMed  Google Scholar 

  170. Wang Z, Jiang T, Li J, Proctor G, McManaman JL, Lucia S, Chua S, Levi M (2005) Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54:2328–2335

    CAS  PubMed  Google Scholar 

  171. Yamashita J, Ohkita M, Takaoka M, Kaneshiro Y, Matsuo T, Kaneko K, Matsumura Y (2007) Role of Na+/H+ exchanger in the pathogenesis of ischemic acute renal failure in mice. J Cardiovasc Pharmacol 49:154–160

    CAS  PubMed  Google Scholar 

  172. Wu D, Russano K, Kouz I, Abraham WM (2013) NHE1 inhibition improves tissue perfusion and resuscitation outcome after severe hemorrhage. J Surg Res 181:e75–e81

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Schelling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, M.D., Myers, E.J. & Schelling, J.R. Na+–H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell. Mol. Life Sci. 72, 2061–2074 (2015). https://doi.org/10.1007/s00018-015-1848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1848-8

Keywords

Navigation