Skip to main content

Advertisement

Log in

IKK-related genetic diseases: probing NF-κB functions in humans and other matters

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2015

Abstract

The transcription factor NF-κB plays a key role in numerous physiological processes such as inflammation, immunity, cell proliferation or control of cell death. Its activation is tightly controlled by a kinase complex, IκB kinase (IKK), composed of three core proteins: IKK1/IKKα, IKK2/IKKβ and NEMO/IKKγ. The first two are structurally related kinases whereas the third one is a regulatory subunit exhibiting affinity for upstream activators modified by polyubiquitin chains. Over the years, several inherited diseases caused by mutations of each of the three subunits of IKK have been identified in humans together with diseases caused by mutations of several of its substrates. They are associated with very specific and complex phenotypes involving a broad range of abnormalities such as impaired innate and acquired immune response, perturbed skin development and defects of the central nervous system. Here, we summarize the diverse clinical, cellular and molecular manifestations of IKK-related genetic diseases and show that studying patient-related mutations affecting the IKK subunits and some of their substrates offers the opportunity to understand the various functions of NF-κB in humans, complementing studies performed with mouse models. This analysis also provides glimpses about putative functions of IKK subunits that may be NF-κB-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  2. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362

    Article  CAS  PubMed  Google Scholar 

  3. Hinz M, Scheidereit C (2014) The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 15(1):46–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hu Y, Baud V, Delhase M et al (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284(5412):316–320

    Article  CAS  PubMed  Google Scholar 

  5. Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21(1):71–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yamamoto Y, Verma UN, Prajapati S et al (2003) Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423:655–659

    Article  CAS  PubMed  Google Scholar 

  7. Anest V, Hanson JL, Cogswell PC et al (2003) A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423:659–663

    Article  CAS  PubMed  Google Scholar 

  8. Shih VF, Tsui R, Caldwell A et al (2011) A single NFκB system for both canonical and non-canonical signaling. Cell Res 21:86–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Iwai K (2014) Diverse roles of the ubiquitin system in NF-κB activation. Biochim Biophys Acta 1843(1):129–136

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Van Antwerp D, Mercurio F et al (1999) Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284(5412):321–325

    Article  CAS  PubMed  Google Scholar 

  11. Pasparakis M, Luedde T, Schmidt-Supprian M (2006) Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ 13(5):861–872

    Article  CAS  PubMed  Google Scholar 

  12. Rudolph D, Yeh WC, Wakeham A et al (2000) Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev 14:854–862

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Makris C, Godfrey VL, Krähn-Senftleben G et al (2000) Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5(6):969–979

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt-Supprian M, Bloch W, Courtois G et al (2000) NEMO/IKK γ-deficient mice model incontinentia pigmenti. Mol Cell 5(6):981–992

    Article  CAS  PubMed  Google Scholar 

  15. Takeda K, Takeuchi O, Tsujimura T et al (1999) Limb and skin abnormalities in mice lacking IKKα. Science 284(5412):313–316

    Article  CAS  PubMed  Google Scholar 

  16. Beg AA, Baltimore D (1996) An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274(5288):782–784

    Article  CAS  PubMed  Google Scholar 

  17. Gerondakis S, Grumont R, Gugasyan R et al (2006) Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25(51):6781–6799

    Article  CAS  PubMed  Google Scholar 

  18. Sebban H, Courtois G (2006) NF-κB and inflammation in genetic disease. Biochem Pharmacol 72(9):1153–1160

    Article  CAS  PubMed  Google Scholar 

  19. Courtois G, Israël A (2011) IKK regulation and human genetics. Curr Top Microbiol Immunol 349:73–95

    CAS  PubMed  Google Scholar 

  20. Landy SJ, Donnai D (1993) Incontinentia pigmenti (Bloch-Sulzberger syndrome). J Med Genet 30(1):53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Smahi A, Courtois G, Vabres P et al (2000) Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 405(6785):466–472

    Article  CAS  PubMed  Google Scholar 

  22. Conte MI, Pescatore A, Paciolla M et al (2014) Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum Mutat 35:165–177

    Article  CAS  PubMed  Google Scholar 

  23. Nenci A, Huth M, Funteh A et al (2006) Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet 15:531–542

    Article  CAS  PubMed  Google Scholar 

  24. Pasparakis M, Courtois G, Hafner M et al (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861–866

    Article  CAS  PubMed  Google Scholar 

  25. Kumari S, Bonnet MC, Ulvmar MH et al (2013) Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 39:899–911

    Article  CAS  PubMed  Google Scholar 

  26. Zonana J, Elder ME, Schneider LC et al (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-γ (NEMO). Am J Hum Genet 67(6):1555–1562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Döffinger R, Smahi A, Bessia C et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27(3):277–285

    Article  PubMed  Google Scholar 

  28. Jain A, Ma CA, Liu S et al (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2(3):223–228

    Article  CAS  PubMed  Google Scholar 

  29. Aradhya S, Courtois G, Rajkovic A et al (2001) Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-γ). Am J Hum Genet 68(3):765–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Orange JS, Brodeur SR, Jain A et al (2002) Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations. J Clin Invest 109(11):1501–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhao T, Yang L, Sun Q et al (2007) The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat Immunol 8:592–600

    Article  CAS  PubMed  Google Scholar 

  32. Gautheron J, Courtois G (2010) “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-κB activation. Cell Mol Life Sci 67(18):3101–3113

    Article  CAS  PubMed  Google Scholar 

  33. Mikkola ML (2009) Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A 149A(9):2031–2036

    Article  CAS  PubMed  Google Scholar 

  34. Niehues T, Reichenbach J, Neubert J et al (2004) Nuclear factor κB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol 114:1456–1462

    Article  PubMed  Google Scholar 

  35. Orange JS, Levy O, Brodeur SR et al (2004) Human nuclear factor κB essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol 114:650–656

    Article  CAS  PubMed  Google Scholar 

  36. Mooster JL, Cancrini C, Simonetti A et al (2010) Immune deficiency caused by impaired expression of nuclear factor-κB essential modifier (NEMO) because of a mutation in the 5’ untranslated region of the NEMO gene. J Allergy Clin Immunol 126:127–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Filipe-Santos O, Bustamante J, Haverkamp MH et al (2006) X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203:1745–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Huang WC, Hung MC (2013) Beyond NF-κB activation: nuclear functions of IκB kinase α. J Biomed Sci 20:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lahtela J, Nousiainen HO, Stefanovic V et al (2010) Mutant CHUK and severe fetal encasement malformation. N Engl J Med 363(17):1631–1637

    Article  CAS  PubMed  Google Scholar 

  40. Stevenson RE, Saul RA, Collins J et al (1987) Cocoon fetus—fetal encasement secondary to ectodermal dysplasia. Proc Greenwood Genet Center 6:10–15

    Google Scholar 

  41. Hu Y, Baud V, Oga T et al (2001) IKKα controls formation of the epidermis independently of NF-κB. Nature 410(6829):710–714

    Article  CAS  PubMed  Google Scholar 

  42. Bartsocas CS, Papas CV (1972) Popliteal pterygium syndrome. Evidence for a severe autosomal recessive form. Med Genet 9:222–226

    Article  CAS  Google Scholar 

  43. Mitchell K, O’Sullivan J, Missero C et al (2012) Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet 90(1):69–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kalay E, Sezgin O, Chellappa V et al (2012) Mutations in RIPK4 cause the autosomal-recessive form of popliteal pterygium syndrome. Am J Hum Genet 90(1):76–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Meylan E, Martinon F, Thome M et al (2002) RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-κB and is processed during apoptosis. EMBO Rep 3(12):1201–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Cariappa A, Chen L, Haider K et al (2003) A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-κB activation, interferes with early B cell development. J Immunol 171:1875–1880

    Article  CAS  PubMed  Google Scholar 

  47. Huang X, McGann JC, Liu BY et al (2013) Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science 339(6126):1441–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yang X, Lu H, Yan B, Romano RA et al (2011) ΔNp63 versatilely regulates a broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res 71(10):3688–3700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Schmidt-Supprian M, Courtois G, Tian J et al (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19:377–389

    Article  CAS  PubMed  Google Scholar 

  50. Pannicke U, Baumann B, Fuchs S et al (2013) Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med 369(26):2504–2514

    Article  CAS  PubMed  Google Scholar 

  51. Mousallem T, Yang J, Urban TJ et al (2014) A nonsense mutation in IKBKB causes combined immunodeficiency. Blood 124:2046–2050

    Article  CAS  PubMed  Google Scholar 

  52. Burns SO, Plagnol V, Gutierrez BM et al (2014) Immunodeficiency and disseminated mycobacterial infection associated with homozygous nonsense mutation of IKKβ. J Allergy Clin Immunol 134:215–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nielsen C, Jakobsen MA, Larsen MJ et al (2014) Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol (Epub ahead of print)

  54. Courtois G, Smahi A, Reichenbach J et al (2003) A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112(7):1108–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Janssen R, van Wengen A, Hoeve MA et al (2004) The same IκBα mutation in two related individuals leads to completely different clinical syndromes. J Exp Med 200(5):559–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yoshioka T, Nishikomori R, Hara J et al (2013) Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation. J Clin Immunol 33:1165–1174

    Article  CAS  PubMed  Google Scholar 

  57. Giancane G, Ferrari S, Carsetti R et al (2013) Anhidrotic ectodermal dysplasia: a new mutation. J Allergy Clin Immunol 132(6):1451–1453

    Article  PubMed  Google Scholar 

  58. Schimke LF, Rieber N, Rylaarsdam S et al (2013) A novel gain-of-function IKBA mutation underlies ectodermal dysplasia with immunodeficiency and polyendocrinopathy. J Clin Immunol 33(6):1088–1099

    Article  CAS  PubMed  Google Scholar 

  59. Ohnishi H, Miyata R, Suzuki T, Nose T et al (2012) A rapid screening method to detect autosomal-dominant ectodermal dysplasia with immune deficiency syndrome. J Allergy Clin Immunol 129:578–580

    Article  PubMed  Google Scholar 

  60. McDonald DR, Mooster JL, Reddy M et al (2007) Heterozygous N-terminal deletion of IκBα results in functional nuclear factor κB haploinsufficiency, ectodermal dysplasia, and immune deficiency. J Allergy Clin Immunol 120(4):900–907

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Granados E, Keenan JE, Kinney MC et al (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 29:861–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kawai T, Nishikomori R, Heike T (2012) Diagnosis and treatment in anhidrotic ectodermal dysplasia with immunodeficiency. Allergol Int 61:207–217

    Article  CAS  PubMed  Google Scholar 

  63. Dupuis-Girod S, Corradini N, Hadj-Rabia S et al (2002) Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109(6):e97

    Article  PubMed  Google Scholar 

  64. Oberle EJ, Verbsky JW, Routes J et al (2014) A172: metaphyseal chondrodysplasia, ectodermal dysplasia, short stature, hypergammaglobulinemia, and spontaneous inflammation without infections in an extended family due to mutation in NFKB1A. Arthritis Rheumatol 66(Suppl 11):S224–S225

    Article  Google Scholar 

  65. Cunningham-Rundles C, Bodian C (1999) Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 92(1):34–48

    Article  CAS  PubMed  Google Scholar 

  66. Chen K, Coonrod EM, Kumánovics A et al (2013) Germline mutations in NFKB2 implicate the non-canonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 93(5):812–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Liu Y, Hanson S, Gurugama P et al (2014) Novel NFKB2 Mutation in early-onset CVID. J Clin Immunol 34:686–690

    Article  CAS  PubMed  Google Scholar 

  68. Lindsley AW, Qian Y, Valencia CA et al (2014) Combined immune deficiency in a patient with a novel NFKB2 mutation. J Clin Immunol (Epub ahead of print)

  69. Lee CE, Fulcher DA, Whittle B et al (2014) Autosomal dominant B cell deficiency with alopecia due to a mutation in NFKB2 that results in non-processible p100. Blood. pii: blood-2014-06-578542

  70. Naito A, Yoshida H, Nishioka E et al (2002) TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 99(13):8766–8771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.S is supported by a CEA/IRTELIS grant. We thank C. Gautheron for expert artwork and Incontinentia Pigmenti France for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Courtois.

Additional information

A. Senegas and J. Gautheron contributed equally to this study.

Patients exhibiting NIK mutations have been identified by Willmann et al. (Nat Commun 5:5360, 2014. doi:10.1038/ncomms6360). They suffer from an immunodeficiency presenting similarities with the one observed in NFKBK2 mutated patients but with more severe signs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senegas, A., Gautheron, J., Maurin, A.G.D. et al. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell. Mol. Life Sci. 72, 1275–1287 (2015). https://doi.org/10.1007/s00018-014-1793-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1793-y

Keywords

Navigation