Skip to main content
Log in

Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: A Case of “Emanation” from “Divine Providence”

  • Published:
Physics in Perspective Aims and scope Submit manuscript

Abstract

We reconstruct Enrico Fermi’s remarkable discovery of neutron-induced radioactivity in March 1934 with a focus on the experimental apparatus he used, such as the original neutron sources preserved in Italy and abroad. Special attention is paid to the role of the Radium Office of the Institute of Public Health in Rome in providing to Fermi the “radium emanation” (Radon-222) used to make his radon-beryllium neutron sources. This particular angle of investigation allows us to make a full reconstruction of what Fermi actually realized in his laboratory, to gain a better insight into his methodological choices, and, ultimately, to understand how special circumstances conspired to make the discovery of neutron-induced radioactivity possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Credit: Archivio Fotografico del Laboratorio di Fisica dell’Istituto Superiore di Sanità, Roma

Fig. 2

Source: ACS, Ministero della Sanità, Istituto Superiore di Sanità, Laboratorio di Fisica – 1927–1989, box 19

Fig. 3

Source: ACS, Ministero della Sanità, Istituto Superiore di Sanità, Laboratorio di Fisica – 1927–1989, box 2

Fig. 4

Credit: Archivio Storico Luce, Emanazione del Radio, 1931

Fig. 5

Credit: Domus Galilaeana, Pisa

Fig. 6

Credit: Domus Galilaeana, Pisa

Fig. 7
Fig. 8

Source: Amaldi et al. “Artificial Radioactivity” (ref. 54), 526

Fig. 9

Courtesy: Roger Sherman, Associate Curator, Modern Physics collection at the Smithsonian

Fig. 10

Credit: Museo Fermi, Rome

Fig. 11

Credit: Museo Fermi, Rome

Fig. 12

Credit: Museo Fermi, Rome

Fig. 13

Credit: Museo Fermi, Rome

Fig. 14

Credit: Museum of Physics, University of Rome “La Sapienza”

Fig. 15

Credit: Museo Fermi, Rome

Fig. 16

Credit: Museo Fermi, Rome

Fig. 17
Fig. 18

Credit: Fondazione “Oscar D’Agostino,” Istituto Francesco De Sanctis – Oscar D’Agostino, Avellino

Fig. 19

Credit: Museo Fermi, Rome

Fig. 20

Source: Archivio Centrale dello Stato (ACS), Ministero della Sanità, Istituto Superiore di Sanità, Laboratorio di Fisica – 1927–1989, b. 5

Similar content being viewed by others

Notes

  1. In his capacity as director of this office, Trabacchi, an accomplished experimental physicist, was involved in the tragic 1928 polar expedition of the airship Italia, commanded by General Umberto Nobile. Before departure, Trabacchi was asked to calibrate a Wulf electrometer to perform measurements of atmospheric electricity during the mission. Trabacchi was also asked to lend a particular type of electrometer (called Wiechert electrometer), uncommon in Italy and probably available only at Trabacchi’s laboratory, which was then to be brought aboard the airship to perform delicate measurements of the electric gradient in atmosphere.

References

  1. Giovanni Acocella, Francesco Guerra, and Nadia Robotti, “Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: The Recovery of His First Laboratory Notebook,” Physics in Perspective 6, no. 1 (2004), 29–41.

  2. The historical-scientific significance of Fermi’s notebook is also discussed in Francesco Guerra and Nadia Robotti, The Lost Notebook of Enrico Fermi: The True Story of the Discovery of Neutron-Induced Radioactivity (Cham: Springer, 2018).

  3. Enrico Fermi, “Radioattività indotta da bombardamento di neutroni,” Ricerca Scientifica 5, no. 1 (1934), 283, reprinted in Collected Papers (Note e Memorie), vol. 1 Italy 1921–1938 (Chicago: University of Chicago Press; Rome: Accademia Nazionale dei Lincei, 1962), 645–46; translated as “Radioactivity Induced by Neutron Bombardment. – I,” in Collected Papers, 674–75.

  4. Francesco Guerra, Matteo Leone and Nadia Robotti, “Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: Neutrons and Neutron Sources,” Physics in Perspective 8, no. 3 (2006), 255–81.

  5. Francesco Guerra and Nadia Robotti, “Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: The Influence of His Theory of Beta Decay,” Physics in Perspective 11, no. 4 (2009), 379–404.

  6. Guerra and Robotti, “Enrico Fermi’s Discovery: The Influence” (ref. 5), 379–404. On the development of Fermi’s theory of beta decay see also: Fred L. Wilson, “Fermi’s Theory of Beta Decay,” American Journal of Physics 36, no. 12 (1968), 1150–60; Laurie M. Brown and Helmuth Rechenberg, “Nuclear Structure and Beta Decay (1932–1933),” American Journal of Physics 56, no. 11 (1988), 982–88.

  7. Don Lincoln and Tia Miceli, “The Enigmatic Neutrino,” The Physics Teacher 53, no. 6 (2015), 331–38; Neset Demirci, “Teaching the History of Science in Physics Classrooms—The Story of the Neutrino,” Physics Education 51, no. 4 (2016), 043003.

  8. Enrico Fermi, “Tentativo di una teoria dell’emissione dei raggi ‘beta,’” Ricerca Scientifica 4, no. 2 (1934), 491–95 (1934); “Tentativo di una teoria dei raggi β,” Nuovo Cimento 11, no. 1 (1934), 1–19; “Versuch einer Theorie der β-Strahlen. I,” Zeitschrift für Physik 88, no. 3–4 (1934), 161–71; reprinted in Collected Papers (ref. 3), 540–44, 559–74, 575–90.

  9. Irène Curie and Frédéric Joliot, “Un nouveau type de radioactivité,” Comptes Rendus 198 (1934), 254–56; reprinted in Frédèric et Irène Joliot-Curie, Œuvres Scientifiques Complètes, ouvrage publié avec le concours du Centre National de la Recherche Scientifique (Paris: Presses Universitaires de France, 1961), 515–16. See also Frédéric Joliot and Irène Curie, “Artificial Production of a New Kind of Radio-Element,” Nature 133, no. 3354 (1934), 201–2.

  10. The early history of positron, with a particular focus on Joliot and Curie’s role, is discussed in Matteo Leone and Nadia Robotti, “Frédéric Joliot, Irène Curie and the Early History of the Positron (1932–33),” European Journal of Physics 31, no. 4 (2010), 975–87; “An Uninvited Guest: The Positron in Early 1930s Physics,” American Journal of Physics 80, no. 6 (2012), 534–41. On the previous Joliot and Curie’s experiments on the emission of positrons during alpha bombardment, see Irene Curie and Frédéric Joliot, “Contribution à l’étude des électrons positifs,” Comptes Rendues 196 (1933), 1105–7; “Sur l’origine des électrons positifs,” Comptes Rendues 196 (1933), 1581–83; “Electrons positifs de transmutations,” Comptes Rendus 196 (1933), 1885–87; “Electrons de matérialisation et de transmutation,” Journal de Physique 4, no. 8 (1933), 494–500.

  11. Francesco Guerra, Matteo Leone and Nadia Robotti, “The Discovery of Artificial Radioactivity,” Physics in Perspective 14, no. 1 (2012), 33–58. On the discovery of artificial radioactivity induced by alpha particles bombardment, see also: D. Skobeltsyne, “La découverte de la radioactivité artificielle et son role dans le développement de la physique depuis vingt ans,” La Pensée: Revue de rationalisme moderne 56 (1954), 3–13; S. Rosenblum, “L’aspect historique de la découverte de la radioactivité artificielle,” Le Journal de Physique et le Radium 16, no. 10 (1955), 743–47; P. M. S. Blackett, “Jean Frédéric Joliot,” Fellows of the Royal Society Obituary Notices 6, no. 1 (1960), 86–105, esp. 90–93; Pierre Biquard, Frédéric Joliot-Curie (Paris: Éditions Seghers, 1961), 40–51; Frédéric Joliot-Curie: The Man and His Theories, trans. Geoffrey Strachan (New York: Paul S. Erikson, 1966), 31–39; Manuel Valadares, “The Discovery of Artificial Radioactivity,” Impact of Science on Society 14, no. 2 (1964), 83–88; Maurice Goldsmith, Frédéric Joliot-Curie: A Biography (London: Lawrence and Wishart, 1976), 48–59; Edoardo Amaldi, “From the Discovery of the Neutron to the Discovery of Nuclear Fission,” Physics Reports 111, no. 1–4 (1984), 1–332, esp. 109–51; Richard Rhodes, The Making of the Atomic Bomb (New York: Simon and Schuster, 1986), 198–202; Rosalynd Pflaum, Grand Obsession: Madame Curie and Her World (New York: Doubleday, 1989), 299–310; Francis Perrin, “Joliot, Frédéric,” in Dictionary of Scientific Biography, vol. 7, ed. Charles Coulson Gillespie (New York: Charles Scribner’s Sons, 1973), 151–57; “La decouverte de la radioactivité beta positive,” Journal de Physique 43, suppl., no. C8 (1982), 431–33; Pierre Radvanyi and Monique Bordry, La radioactivité artificielle et son histoire (Paris: Éditions du Seuil, 1984), 95–119; Michel Pinault, Frédéric Joliot-Curie (Paris: Editions Odile Jacob, 2000), 74–79; Roger H. Stuewer, “The Discovery of Artificial Radioactivity,” in Œuvre et Engagement de Frédéric Joliot-Curie. À l’occaision du centième anniversaire de sa naissance, ed. Monique Bordry and Pierre Radvanyi (Les Ulis: EDP Sciences, 2001), 11–20; Pierre Radvanyi, “La radioactivité artificielle,” Pour la Science. Les Génies de la Science. Les Curie 9 (2001–2002), 58–69.

  12. Otto R. Frisch, “How It All Began,” in Otto R. Frisch and John A. Wheeler, “The Discovery of Fission,” Physics Today 20, no. 11 (1967), 46.

  13. James Chadwick, “Possible Existence of a Neutron,” Nature 129, no. 3252 (1932), 312; “The Existence of a Neutron,” Proceedings of the Royal Society London A 136, no. 830 (1932), 692–708; “The Bakerian Lecture: The Neutron,” Proceedings of the Royal Society London A 142, no. 846 (1933), 1–25; “The Neutron and Its Properties,” in Nobel Lectures, Physics 1922–1941 (Amsterdam: Elsevier Publishing Company, 1965). On Chadwick’s discovery see, for example: Valery Nesvizhevsky and Jacques Villain, “The Discovery of the Neutron and Its Consequences (1930–1940),” Comptes Rendus Physique 18 (2017), 592–600.

  14. Guerra, Leone, and Robotti, “Enrico Fermi’s Discovery: Neutrons” (ref. 4), 268.

  15. Guerra and Robotti, “Enrico Fermi’s Discovery: The Influence” (ref. 5), 379–404.

  16. Guerra, Leone and Robotti, “Enrico Fermi’s Discovery: Neutrons” (ref. 4), 268.

  17. Laura Fermi, Atoms in the Family: My Life with Enrico Fermi (Chicago: University of Chicago Press, 1954), 85.

  18. Regio decreto n. 2449, 31 ottobre 1923. Modificazioni alla legge 3 dicembre 1922, n. 1636, sulla ricerca ed utilizzazione delle sostanze radioattive. Gazzetta Ufficiale del Regno d’Italia, 24 novembre 1923, n. 276, 6895.

  19. Regio decreto-legge 16 luglio 1925, n. 1421. Passaggio dell’Ufficio per le sostanze radioattive dal Ministero dell’economia nazionale al Ministero dell’interno. Gazzetta Ufficiale del Regno d’Italia, parte prima, 25 agosto 1925, n. 196, p. 3610.

  20. Decreto ministeriale 1° novembre 1925. Denominazione dell’Ufficio per le sostanze radioattive, passato dalla dipendenza del Ministero dell’economia nazionale a quella del Ministero dell’interno. Gazzetta Ufficiale del Regno d’Italia, parte prima, 20 novembre 1925, n. 270, p. 4611.

  21. Legge 3 dicembre 1922, n. 1636, che reca provvedimenti per la ricerca e la utilizzazione delle sostanze radioattive. Gazzetta Ufficiale del Regno d’Italia, 28 dicembre 1922, n. 303, 3420.

  22. Archivio Centrale dello Stato (ACS), Ministero della Sanità, Istituto Superiore di Sanità, Laboratorio di Fisica – 1927–1989, box 19.

  23. ACS, 1927–1989 (ref. 22), box 2.

  24. Charles Hayter, Elements of Hope: Radium and the Response to Cancer in Canada, 1900–1940 (Montreal: McGill-Queen’s University Press, 2005), 96.

  25. Nella Mortara, “L’Ufficio del Radio,” Rivista di radiologia e fisica medica 4, no. 4 (1932), 462–68.

  26. Mortara, “L’Ufficio del Radio” (ref. 25), 467.

  27. Enrico Fermi and Franco Rasetti, “Uno spettrografo per raggi ‘gamma’ a cristallo di bismuto,” Ricerca Scientifica 4, no. 2 (1933), 299–302; reprinted in Fermi, Collected Papers (ref. 3), 549–52.

  28. Fermi, “Radioattività indotta” (ref. 3), 283.

  29. Enrico Fermi, “Radioattività prodotta da bombardamento di neutroni,” Nuovo Cimento 11, no. 7 (1934), 429–41, on 430; reprinted in Fermi, Collected Papers (ref. 3), 715–24.

  30. Fermi and Rasetti, “Uno spettrografo” (ref. 27), 299–302.

  31. Matteo Leone, Nadia Robotti and Carlo Alberto Segnini, “Fermi Archives at the Domus Galilaeana in Pisa,” Physis 37, no. 2 (2000), 501–33, on 504.

  32. Leone, Robotti and Segnini, “Fermi Archives” (ref. 31).

  33. It is a pleasure for us to thank Roger Sherman, Associate Curator, Modern Physics collection at the Smithsonian National Museum of American History, for his exquisite courtesy in showing us the neutron source and the related correspondence, during a memorable and highly emotional visit at the Smithsonian, in December 2017, by two of us (FG and NR) and Luisa Cifarelli, President of the Italian Physical Society and of the Enrico Fermi Historical Museum of Physics and Study and Research Centre, Rome.

  34. Leone, Robotti and Segnini, “Fermi Archives” (ref. 31), 501–33.

  35. Maurice de Broglie and Louise Leprince-Ringuet, “Sur la dispersion des neutrons du glucinium et l’existence de noyaux de recul provoques par le lithium excite,” Comptes Rendus 194 (1932), 1616–17.

  36. Fermi, “Radioattività prodotta” (ref. 29), 431.

  37. In the copy of the volume of Il Nuovo Cimento that contains this article by Fermi at the Physics Department in Rome, which dates to Fermi’s time, at the bottom of the page of the article where these paper containers are mentioned is a note written in pencil: “An unfortunate individual was officially assigned the difficult and boring task of constructing such containers, called in technical terms ‘pitali’ (chamber pots).” The conspicuously common word pitale is never used in the papers published by Fermi and his collaborators. Instead we find it, always accompanied by a serial number, in the laboratory notebooks or measurement cards belonging to Fermi and his collaborators to indicate some samples being examined. On the basis the handwriting, even if the author tried to modify it by using lower case block letters, it was possible to identify who wrote the phrase: it was demonstrably Enrico Fermi. We do not know who the “unfortunate individual” was. Guerra and Robotti, The Lost Notebook of Enrico Fermi (ref. 2), 147.

  38. Fermi, “Radioattività prodotta” (ref. 29), 431–32.

  39. On the relationship between Bothe and Rossi on this issue, see Luisa Bonolis, “Walther Bothe and Bruno Rossi: The Birth and Development of Coincidence Methods in Cosmic-Ray Physics,” American Journal of Physics 79, no. 11 (2011), 1133–50.

  40. Fermi, “Radioattività prodotta” (ref. 29), 431.

  41. About fifty pages of Fermi’s notebooks are reproduced in Guerra and Robotti, The Lost Notebook (ref. 2), 179–227.

  42. Gustav Ortner and Georg Stetter, “Über den elektrischen Nachweis einzelner Korpuskularstrahlen,” Zeitschrift für Physik 54, no. 7–8 (1929), 449–76.

  43. Enrico Fermi, “Prospettive di applicazioni della radioattività artificiale,” Rendiconti dell’Istituto di Sanità Pubblica 1 (1938), 421–32.

  44. Guerra, Leone and Robotti, “Enrico Fermi’s discovery” (ref. 4), 270 (figure 7).

  45. The standard view has been that Fermi started with hydrogen and then systematically bombarded the other elements of increasing atomic number in the periodic table, a view that probably originated with his wife Laura; see her Atoms in the Family: My Life with Enrico Fermi (ref. 17), 85–86. It then was often repeated; see, for example Amaldi, “From the Discovery of the Neutron” (ref. 11), 124, and Richard Rhodes, The Making of the Atomic Bomb (New York: Simon and Schuster, 1986), 211.

  46. Fermi, “Radioattività indotta” (ref. 3), 283.

  47. Fermi, “Radioattività prodotta” (ref. 29), 438–39.

  48. Fermi, “Radioattività prodotta” (ref. 29), 435.

  49. We gratefully acknowledge a useful discussion with Luciano Maiani concerning the interpretation Fermi first gave of his aluminum results.

  50. Emilio Segrè, “The Fermi School in Rome,” European Journal of Physics 9, no. 2 (1988), 83.

  51. Enrico Fermi, “Radioattività provocata da bombardamento di neutroni,” Ricerca Scientifica 5, no. 1 (1934), 330–31; Edoardo Amaldi, Oscar D’Agostino, Enrico Fermi, Franco Rasetti, and Emilio Segrè, “Radioattività ‘beta’ provocata da bombardamento di neutroni. III,” Ricerca Scientifica 5, no. 1 (1934), 452–53; “Radioattività provocata da bombarda- mento di neutroni. – IV,” Ricerca Scientifica 5, no. 1 (1934), 652–53; “Radioattività provocata da bombarda- mento di neutroni. – V,” Ricerca Scientifica 5, no. 2 (1934), 21–22; Enrico Fermi, Edoardo Amaldi, Oscar D’Agostino, Franco Rasetti, and Emilio Segrè, “Artificial Radioactivity Produced by Neutron Bombardment,” Proceedings of the Royal Society London A 146, no. 857 (1934), 483–500. All are reprinted and translated in Fermi, Collected Papers (ref. 3).

  52. Fermi, “Prospettive di applicazioni” (ref. 43), 421–32.

  53. “It is well known that according to a widespread tradition, derived from Laura Fermi’s book (ref. 17), the water in the goldfish fountain in the garden of the Physics Institute in Via Panisperna was used to produce the slowing down of the neutrons, and thus increase their efficiency in nuclear reactions. Recently the fountain was declared a Historical Site by the European Physical Society. Possible documentary evidence for this tradition can be supplied, for example, by the records on 7 November 1934 of measurements of neutron source activity, in which it is stated that the experiments were carried out in the medium ‘aqua fontis,’ as recorded in a laboratory notebook of Fermi’s in the Domus Galilaeana.… Naturally, given the great sense of humour Fermi sometimes displayed … one might think that the appellation ‘aqua fontis’ chosen by Fermi simply denoted ‘tap water,’ compared to the solutions of boric acid H3BO3 in various concentrations used later. In any case, the link between the goldfish fountain and the description ‘aqua fontis’ is certainly appealing.” Guerra and Robotti, The Lost Notebook (ref. 2), 231.

  54. Enrico Fermi, Edoardo Amaldi, Bruno Pontecorvo, Franco Rasetti, and Emilio Segrè, “Azione di sostanze idrogenate sulla radioattività provocata da neutroni. – I,” Ricerca Scientifica 5, no. 2 (1934), 282–83; reprinted in Collected Papers (ref. 3), 757–58; translated as “Influence of Hydrogenous Substances on the Radioactivity Produced by Neutrons. – I,” in Fermi, Collected Papers (ref. 3), 761–62. Edoardo Amaldi, Oscar D’Agostino, Enrico Fermi, Bruno Pontecorvo, Franco Rasetti, and Emilio Segrè, “Artificial Radioactivity Produced by Neutron Bombardment. – II,” Proceedings of the Royal Society London A 149, no. 868 (1935), 522–58; reprinted in Fermi, Collected Papers (ref. 3), 765–94.

  55. Attestato di Privativa Industriale n. 324458, Archivio Amaldi, 2 N/1, Dipartimento di Fisica, Università di Roma “La Sapienza.”

  56. Max Cutler, “The Radium Treatment of Cancer,” The American Journal of Nursing 34, no. 7 (1934), 641–48.

    Google Scholar 

  57. ACS, 1927–1989 (ref. 22), box 5.

  58. ACS, 1927–1989 (ref. 22), box 5.

  59. ACS, 1927–1989 (ref. 22), box 5.

  60. Regio decreto-legge 11 gennaio 1934, n. 27. Creazione e funzionamento dell’Istituto di sanità pubblica. Gazzetta Ufficiale del Regno d’Italia, parte prima, 27 gennaio 1934, n. 22, p. 405.

  61. ACS, 1927–1989 (ref. 22), box 5.

  62. ACS, 1927–1989 (ref. 22), box 5.

  63. ACS, 1927–1989 (ref. 22), box 5.

  64. Edoardo Amaldi and Enrico Fermi, “On the Absorption and the Diffusion of Slow Neutrons,” Physical Review 50, no. 10 (1936), 899–928; reprinted in Fermi, Collected Papers (ref. 3), 892–942.

  65. Enrico Fermi and Franco Rasetti, “Azione del boro sui neutroni caratteristici dello iodio,” Ricerca Scientifica 9, no. 2 (1938), 472–73; reprinted in Fermi, Collected Papers (ref. 3), 1028–29.

  66. ACS, 1927–1989 (ref. 22), box 5.

  67. John H. Lawrence, “Some Tracer and Therapeutic Studies with Artificial Radioactivity,” The British Journal of Radiology 21, no. 251 (1948), 531–43.

  68. Esther B. Sparberg, “A Study of the Discovery of Fission,” American Journal of Physics 32, no. 1 (1964), 2–8.

  69. B. Cameron Reed, “The Manhattan Project and Related Nuclear Research,” American Journal of Physics 73, no. 9 (2005), 805–11; 79, no. 2 (2011), 151–163 (2011); 84, no. 10 (2016), 734–45.

  70. Gian Francesco Giudice, “Big Science and the Large Hadron Collider,” Physics in Perspective 14, no. 1 (2012), 95–112.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Leone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Francesco Guerra is Professor of Theoretical Physics (Emeritus) at the Department of Physics of Sapienza University of Rome. His research interests include Quantum Field Theory, Elementary Particle Theory, Statistical Mechanics of Complex Systems, and History of Nuclear Physics. Matteo Leone is Full Professor of Didactics and History of Physics at the Department of Philosophy and Educational Sciences of University of Turin. His research activities focus on the history of physics in the nineteenth and twentieth centuries. Nadia Robotti is Full Professor of History of Physics at the Department of Physics of University of Genova and member of the Académie Internationale d’Histoire des Sciences. Her research activities focus on the history of atomic physics, nuclear physics, and quantum mechanics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, F., Leone, M. & Robotti, N. Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: A Case of “Emanation” from “Divine Providence”. Phys. Perspect. 22, 129–161 (2020). https://doi.org/10.1007/s00016-020-00258-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00016-020-00258-w

Keywords

Navigation