Skip to main content
Log in

Almost maximal volume entropy

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove the existence of manifolds with almost maximal volume entropy which are not hyperbolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adler, A. Konheim, and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Ballmann and M. P. Wojtkowski, An estimate for the measure-theoretic entropy of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989), 271–279.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Chen, X. Rong, and S. Xu, Quantitative space form rigidity under lower Ricci curvature bound, arXiv:1604.06986 [math.DG].

  4. A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (1982), 375–392.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679–688.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Goodwyn, Comparing topological entropy with measure entropy, Amer. J. Math. 94 (1972), 336–388.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, (Russian) Dokl. Akad. Nauk SSSR 119 (1958), 861–864.

  8. F. Ledrappier and X. Wang, An integral formula for the volume entropy with applications to rigidity, J. Differential Geom. 85 (2010), 461–477.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979), 567–573.

  10. D. B. McReynolds, A. Reid, and M. Stover, Collisions at infinity in hyperbolic manifolds, Math Proc. Soc. 155 (2013), 459–463.

    MathSciNet  MATH  Google Scholar 

  11. A. Preissmann, Quelques propriétés globales des espaces de Riemann, Comm. Math. Helv. 15 (1942–43), 175–216.

  12. Ja. G. Sinai, On the concept of entropy of a dynamical system, (Russian) Dokl. Akad. Nauk SSSR 124 (1959), 768–771.

  13. V. Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106 (1989), 797–802.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemangi Shah.

Additional information

Viktor Schroeder: Supported by Swiss National Science Foundation. Hemangi Shah: The author thanks the Institute of Mathematics of the University of Zürich for its hospitality and support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, V., Shah, H. Almost maximal volume entropy. Arch. Math. 110, 515–521 (2018). https://doi.org/10.1007/s00013-018-1167-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1167-z

Keywords

Mathematics Subject Classification

Navigation