Skip to main content
Log in

An eigenvalue comparison theorem for the Dirac operator on surfaces

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We use the Ricci flow on surfaces to give upper and lower estimates for the eigenvalues of the square of the Dirac operator of a surface (M, g) of negative Euler characteristic. For each of the eigenvalues, the estimate depends on simple geometric data of (M, g) and on the corresponding eigenvalue of the square of the Dirac operator of the unique constant curvature metric on the conformal class of g whose volume equals that of g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ammann, Spin-Strukturen und das Spektrum des Dirac-Operators, Shaker Verlag, 1998. Doktorarbeit – Universität Freiburg (Germany).

  2. Ammann B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Differential Geom. Appl. 18, 21–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammann B.: Dirac eigenvalue estimates on two-tori. J. Geom. Phys. 51, 372–386 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammann B., Bär C.: Dirac eigenvalue estimates on surfaces. Math. Z. 240, 423–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5.  Bär C.: Lower eigenvalue estimates for Dirac operators. Math. Ann. 293, 39–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Chow and D. Knopf, The Ricci flow: an introduction, volume 110 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.

  7. Di Cerbo L. F.: Eigenvalues of the Laplacian under the Ricci flow. Rend. Mat. Appl. (7) 27, 183–195 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Hamilton R. S.: Three-manifolds with positive Ricci curvature. J. Differential Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  9. R. S. Hamilton, The Ricci flow on surfaces, In Mathematics and general relativity (Santa Cruz, CA, 1986), volume 71 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1988, 237–262.

  10. Herzlich M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Comm. Math. Phys. 188, 121–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11.  Hijazi O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Comm. Math. Phys. 104, 151–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Hijazi, Spectral properties of the Dirac operator and geometrical structures, In Geometric methods for quantum field theory (Villa de Leyva, 1999), 116–169, World Sci. Publ., River Edge, NJ, 2001.

  13.  Lott J.: Eigenvalue bounds for the Dirac operator. Pacific J. Math. 125, 117–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14.  Ma L.: Eigenvalue monotonicity for the Ricci–Hamilton flow. Ann. Global Anal. Geom. 29, 287–292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Girão.

Additional information

The author was partially supported by CNPq, Brazil, grant number 483844/2013-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girão, F. An eigenvalue comparison theorem for the Dirac operator on surfaces. Arch. Math. 107, 295–300 (2016). https://doi.org/10.1007/s00013-016-0947-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0947-6

Mathematics Subject Classification

Keywords

Navigation