Skip to main content
Log in

Distribution of polynomial discriminants modulo a prime

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We obtain bounds of sums of additive characters with discriminants of polynomials over finite fields. We use these bounds to study the distribution of discriminants modulo a prime p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae S., Cha B., Jung H.: Möbius function in short intervals for function fields. Finite Fields Appl. 34, 235–249 (2015)

    Article  MathSciNet  Google Scholar 

  2. Carlitz L.: The arithmetic of polynomials in a Galois field. Amer. J. Math. 54, 39–50 (1932)

    Article  MathSciNet  Google Scholar 

  3. Carmon D., Rudnick Z.: The autocorrelation of the Möbius function and Chowlas conjecture for the rational function field. Quart. J. Math. 65, 53–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dalen K.: On a theorem of Stickelberger. Math. Scand. 3, 124–126 (1955)

    MathSciNet  MATH  Google Scholar 

  5. Deligne P.: La conjecture de Weil, I. Inst. Hautes Etudes Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  6. Deligne P.: La conjecture de Weil, II. Inst. Hautes Etudes Sci. Publ. Math. 52, 313–428 (1981)

    Google Scholar 

  7. M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997.

  8. I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston 1994.

  9. D. Gómez-Pérez et al. Stable polynomials over finite fields, Rev. Mat. Iberoam. (to appear).

  10. Granville A., Soundararajan K.: Large character sums. J. Amer. Math. Soc. 14, 365–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1979.

  12. H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.

  13. Katz N. M.: Estimates for “singular” exponential sums. Intern. Math. Res. Notices 16, 875–899 (1999)

    Article  Google Scholar 

  14. Katz N.M.: Estimates for nonsingular multiplicative character sums. Intern. Math. Res. Notices 2002, 333–349 (2002)

    Article  MATH  Google Scholar 

  15. Katz N. M.: Estimates for nonsingular mixed character sums. Intern. Math. Res. Notices 2007, 1–19 (2007)

    Google Scholar 

  16. Katz N. M.: Estimates for mixed character sums. Geom. Funct. Anal., 18, 1251–1269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York-London-Sydney, 1974.

  18. W.-C. W. Li, Number theory with applications, World Scientific, Singapore, 1996.

  19. R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, Cambridge, 1997.

  20. H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, Amer. Math. Soc., Providence, RI, 1994.

  21. Montgomery H. L., Vaughan R. C.: Exponential sums with multiplicative coefficients. Invent. Math. 43, 69–82 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rojas-León A.: Estimates for singular multiplicative character sums. Intern. Math. Res. Notices 2005, 1221–1234 (2005)

    Article  MATH  Google Scholar 

  23. L. Stickelberger, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verh. 1 Internat. Math. Kongresses, 1897, Leipzig, 1898, 182–193.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Shparlinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shparlinski, I.E. Distribution of polynomial discriminants modulo a prime. Arch. Math. 105, 251–259 (2015). https://doi.org/10.1007/s00013-015-0806-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0806-x

Mathematics Subject Classification

Keywords

Navigation