Skip to main content
Log in

On Fréchet–Hilbert algebras

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We consider Hilbert algebras with a supplementary Fréchet topology and get various extensions of the algebraic structure by using duality techniques. In particular we obtain optimal multiplier-type involutive algebras which in applications are large enough to be of significant practical use. The setting covers many situations arising from quantization rules, as those involving square-integrable families of bounded operators

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonets M. A.: The Classical Limit for Weyl Quantization, Lett. Math. Phys. 2, 241–245 (1978)

    Google Scholar 

  2. Beltită I., Beltită D.: Magnetic Pseudo-differential Weyl Calculus on Nilpotent Lie Groups, Ann. Global Anal. Geom. 36, 293–322 (2009)

    Article  MATH  Google Scholar 

  3. D. Beltită and I. Beltită, A Survey on Weyl Calculus for Representations of Nilpotent Lie Groups, In: S.T. Ali, P. Kielanowski, A. Odzijewicz, M. Schlichenmeier, Th. Voronov (eds.), XXVIII Workshop on Geometric Methods in Physics, (2009), 7–20.

  4. I. Beltiţă and D. Beltiţă, Continuity of Magnetic Weyl Calculus, J. Funct. Analysis, 260 (2011), 1944–1968.

  5. I. Beltiţă, D. Beltiţă, and M. Măntoiu, Quantization and Dequantization via Square-Integrable Families of Operators, ArXiV and submitted.

  6. J. Dixmier, Von Neumann Algebras, North Holland, Amsterdam, New York, Oxford, (1981).

  7. G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ, (1989).

  8. J. M. Gracia Bondia and J. C. Varilly, Algebras of Distributions Suited to Phase-Space Quantum Mechanics. I, J. Math. Phys, 29 (1988), 869–878.

    Article  Google Scholar 

  9. J. M. Gracia Bondia and J. C. Varilly, Algebra of Distributions Suitable for Phase Space Quantum Mechanics. II, Topologies on the Moyal algebra, J. Math. Phys. 29 (1988), 880–887.

  10. K. Gröchenig and T. Strohmer, Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand’s Symbol Class, J. reine angew. Math. 613, (2007), 121–146.

  11. S. Haran, Quantizations and Symbolic Calculus over the p-adic Numbers, Ann. Inst. Fourier (Grenoble) 43 (1993), 997–1053.

  12. V. Iftimie, M. Măntoiu, and R. Purice, Magnetic Pseudodifferential Operators, Publ. RIMS. 43, (2007), 585–623.

  13. M. V. Karasev and T. A. Osborn, Symplectic Areas, Quantization, and Dynamics in Electromagnetic Fields, J. Math. Phys. 43 (2002), 756–788.

  14. M. Măntoiu and R. Purice, The Magnetic Weyl Calculus, J. Math. Phys. 45 (4), (2004), 1394–1417.

  15. M. Măntoiu and R. Purice, The Modulation Mapping for Magnetic Symbols and Operators, Proc. Amer. Math. Soc. 138 (2010), 2839–2852.

  16. N. V. Pedersen, Matrix Coefficients and a Weyl Correspondence for Nilpotent Lie Groups, Invent. Math. 118, (1994), 1–36.

  17. M. Ruzhanski and V. Turunen, Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhäuser, Basel, 2010. 724pp.

  18. M. Ruzhanski and V. Turunen, Global Quantization of Pseudo-differential Operators on Compact Lie Groups, SU(2) and 3-Sphere, Int. Math. Res. Notices 2013 (2013), 2439–2496.

  19. M. Ruzhansky, V. Turunen, and J. Wirth, Hörmander Class of Pseudo-differential Operators on Compact Lie Groups and Global Hypoellipticity, J. Fourier Anal. Appl., 20 (2014), 476–499.

  20. H. Schaefer, Topolgical Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1971.

  21. I. E. Segal, Transforms for Operators and Symplectic Automorphisms over a Locally Compact Abelian Group, Math. Scand. 13 (1963), 31–43.

  22. M. A. Soloviev, Moyal Multiplier Algebras of the Test Function Spaces of Type S, J. Math. Phys. 52 (2011), p063502.

  23. F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.

  24. A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Măntoiu.

Additional information

The authors have been supported by the Chilean Science Foundation Fondecyt under the Grant 1120300. RP acknowledges the partial support of a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0131 and the hospitality of the Universidad de Chile where part of this work has been done.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Măntoiu, M., Purice, R. On Fréchet–Hilbert algebras. Arch. Math. 103, 157–166 (2014). https://doi.org/10.1007/s00013-014-0675-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0675-8

Mathematics Subject Classification

Keywords

Navigation