Skip to main content
Log in

Choice-free topological duality for implicative lattices and Heyting algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We develop a common semantic framework for the interpretation both of \({\textbf {IPC}}\), the intuitionistic propositional calculus, and of logics weaker than \({\textbf {IPC}}\) (substructural and subintuitionistic logics). To this end, we prove a choice-free representation and duality theorem for implicative lattices, which may or may not be distributive. The duality specializes to a choice-free duality for the full subcategory of Heyting algebras and a category of topological sorted frames with a ternary sorted relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as datasets were neither generated nor analysed.

References

  1. Allwein, G., Hartonas, C.: Duality for bounded lattices. Tech. Rep. IULG-93-25, Indiana University Logic Group (1993)

  2. Barwise, J.: Constraints, channels and the flow of information. In: Aczel, P., Israel, D., Katagiri, Y., Peters, S. (eds.) Situation Theory and its Applications, vol. 3, pp. 3–27. CSLI Publications, Stanford (1993)

    Google Scholar 

  3. Barwise, J., Gabbay, D., Hartonas, C.: On the logic of information flow. Log. J. IGPL 3(1), 7–49 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., Kurz, A.: Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comput. Sci. 20(3), 359–393 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bezhanishvili, N., Dmitrieva, A., de Groot, J., Moraschini, T.: Positive (modal) logic beyond distributivity (2022)

  6. Bezhanishvili, N., Grilletti, G., Holliday, W.H.: Algebraic and topological semantics for inquisitive logic via choice-free duality. In: Iemhoff, R., Moortgat, M., de Queiroz, R.J. G.B.: editors, Logic, Language, Information, and Computation—26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2–5, 2019, Proceedings, volume 11541 of Lecture Notes Computer Science. Springer, pp. 35–52 (2019)

  7. Bezhanishvili, N., Holliday, W.H.: Choice-free Stone duality. J. Symbol. Logic 85(1), 109–148 (2020)

    Article  MathSciNet  Google Scholar 

  8. Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, 3rd edn. American Mathematical Society, Providence (1979). (corrected reprint of the 1967 third edition)

    Google Scholar 

  9. Blok, W.J.: Varieties of Interior Algebras. Dissertation University of Amsterdam, Department of Mathematics (1976)

  10. Celani, S., Jansana, R.: A closer look at some subintuitionistic logics. Notre Dame J. Formal Logic 42(4), 225–255 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chagrov, A., Zakharyashchev, M.: Modal companions of intermediate propositional logics. Stud. Logic. 51(1), 49–82 (1992)

    Article  MathSciNet  Google Scholar 

  12. Chernilovskaya, A., Gehrke, M., van Rooijen, L.: Generalised Kripke semantics for the Lambek–Grishin calculus. Log. J. IGPL 20(6), 1110–1132 (2012)

    Article  MathSciNet  Google Scholar 

  13. Corsi, G.: Weak logics with strict implication. Math. Log. Q. 33(5), 389–406 (1987)

    Article  MathSciNet  Google Scholar 

  14. Coumans, D., Gehrke, M., van Rooijen, L.: Relational semantics for full linear logic. J. Appl. Log. 12(1), 50–66 (2014). (Logic Categories Semantics)

    Article  MathSciNet  Google Scholar 

  15. Craig, A.: Representations and dualities for bounded lattices. Acta Univ. M. Belii Ser. Math. 80, 1–35 (2022)

    MathSciNet  Google Scholar 

  16. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  17. Došen, K.: Modal translations in K and D. In: de Rijke, M. (ed.) Diamonds and Defaults, pp. 103–127. Kluwer Academic Publishers, Dordrecht (1993)

    Chapter  Google Scholar 

  18. Esakia, L.: On modal companions of superintuitionistic logics, VII Soviet Symposium on Logic. pp. 135–136 (Kiev, 1976) (1976)

  19. Esakia, L.: Heyting Algebras: Duality Theory. Springer, Cham (2019)

    Book  Google Scholar 

  20. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, New York (2007)

    Google Scholar 

  21. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Gehrke, M.: Generalized Kripke frames. Stud. Logic. 84(2), 241–275 (2006)

    Article  MathSciNet  Google Scholar 

  23. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238, 345–371 (2001)

    Article  MathSciNet  Google Scholar 

  24. Gödel, K.: An interpretation of the intuitionistic propositional calculus. In: Feferman, S. (ed.) Collected Works, vol. 1, pp. 300–303. Oxford University Press, Oxford (1986) . (First pubished in German, 1933)

    Google Scholar 

  25. Goldblatt, R.: Semantic analysis of orthologic. J. Philos. Logic 3, 19–35 (1974)

    Article  MathSciNet  Google Scholar 

  26. Gouveia, M.J., Priestley, H.A.: Canonical extensions and profinite completions of semilattices and lattices. Order 31(2), 189–216 (2014)

    Article  MathSciNet  Google Scholar 

  27. Hartonas, C.: Order-dual relational semantics for non-distributive propositional logics. Log. J. IGPL 25(2), 145–182 (2017)

    MathSciNet  Google Scholar 

  28. Hartonas, C.: Order-dual relational semantics for non-distributive propositional logics: a general framework. J. Philos. Logic 47(1), 67–94 (2018)

    Article  MathSciNet  Google Scholar 

  29. Hartonas, C.: Duality results for (co)residuated lattices. Logica Univ. 13(1), 77–99 (2019)

    Article  MathSciNet  Google Scholar 

  30. Hartonas, C.: Modal translation of substructural logics. J. Appl. Non-Class. Log. 30(1), 16–49 (2020)

    Article  MathSciNet  Google Scholar 

  31. Hartonas, C.: Reconcilliation of approaches to the semantics of logics without distribution. In: Bimbó, K. (ed.) Relevance Logics and other Tools for Reasoning: Essays in Honor of J. Michael Dunn, Number 46 in Tributes, pp. 215–236. College Publications, Suwanee (2022)

    Google Scholar 

  32. Hartonas, C.: Choice-free dualities for lattice expansions: Application to logics with a negation operator (2023). https://doi.org/10.48550/ arXiv2301.05661

  33. Hartonas, C.: Duality for normal lattice expansions and sorted residuated frames with relations. Algebra Univ. 84, 1 (2023)

    Article  MathSciNet  Google Scholar 

  34. Hartonas, C.: Duality for lattice-ordered algebras and for normal algebraizable logics. Stud. Logic. 58, 403–450 (1997)

    Article  MathSciNet  Google Scholar 

  35. Hartonas, C.: Stone duality for lattice expansions. Log. J. IGPL 26, 475–504 (2018)

    Article  MathSciNet  Google Scholar 

  36. Hartonas, C., Dunn, J.M.: Duality theorems for partial orders, semilattices, Galois connections and lattices. Tech. Rep. IULG-93-26, Indiana University Logic Group (1993)

  37. Hartonas, C., Dunn, J.M.: Stone duality for lattices. Algebra Univ. 37, 391–401 (1997)

    Article  MathSciNet  Google Scholar 

  38. Hartonas, C., Orłowska, E.: Representation of lattices with modal operators in two-sorted frames. Fundam. Inform. 166(1), 29–56 (2019)

    Article  MathSciNet  Google Scholar 

  39. Holliday, W.H.: Possibility frames and forcing for modal logic. UC Berkeley Working Paper in Logic and the Methodology of Science. ’https://escholarship.org/uc/item/5462j5b6’ (2015)

  40. Holliday, W.H.: Possibility frames and forcing for modal logic. UC Berkeley Working Paper in Logic and the Methodology of Science. ’https://escholarship.org/uc/item/0tm6b30q’ (2018)

  41. Jónsson, B., Tarski, A.: Boolean algebras with operators I. Am. J. Math. 73, 891–939 (1951)

    Article  MathSciNet  Google Scholar 

  42. Jónsson, B., Tsinakis, C.: Relation algebras as residuated Boolean algebras. Algebra Univ. 30, 469–478 (1993)

    Article  MathSciNet  Google Scholar 

  43. Maleki, F.S., De Jongh, D.: Weak subintuitionistic logics. Log. J. IGPL 25(2), 214–231 (2016)

    MathSciNet  Google Scholar 

  44. Massas, G.: Choice-Free de Vries Duality (2022)

  45. McDonald, J., Yamamoto, K.: Choice-free duality for orthocomplemented lattices by means of spectral spaces. Algebra Univ. 83, 4 (2022)

    Article  MathSciNet  Google Scholar 

  46. Moshier, M.A., Jipsen, P.: Topological duality and lattice expansions, I: a topological construction of canonical extensions. Algebra Univ. 71(2), 109–126 (2014)

    Article  MathSciNet  Google Scholar 

  47. Moshier, M.A., Jipsen, P.: Topological duality and lattice expansions, II: lattice expansions with quasioperators. Algebra Univ. 71, 221–234 (2014)

    Article  MathSciNet  Google Scholar 

  48. Priestley, H.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  Google Scholar 

  49. Restall, G.: Subintuitionistic logics. Notre Dame J. Formal Logic 35(1), 116–129 (1994)

    Article  MathSciNet  Google Scholar 

  50. Routley, R., Meyer, R.: The semantics of entailment. In: Studies in Logic and the Foundations of Mathematics, vol. 68, pp. 199–243. Elsevier, New York (1973)

    Google Scholar 

  51. Stone, M.H.: Topological representation of distributive lattices and brouwerian logics. Časopsis pro Pěsiování Mat. Fysiky 67, 1–25 (1937)

    Google Scholar 

  52. Suzuki, T.: Bi-approximation semantics for substructural logic at work. Adv. Modal Logic 8, 411–433 (2010)

    MathSciNet  Google Scholar 

  53. Visser, A.: A propositional logic with explicit fixed points. Stud. Logic. 40(2), 155–175 (1981)

    Article  MathSciNet  Google Scholar 

  54. Wansing, H.: Displaying as temporalizing. In: Akama, S. (ed.) Logic, Language and Computation, pp. 159–178. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  55. Wolter, F., Zakharyaschev, M.: On the Blok–Esakia theorem. In: Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics, pp. 99–118. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysafis Hartonas.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Presented by N. Galatos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartonas, C. Choice-free topological duality for implicative lattices and Heyting algebras. Algebra Univers. 85, 3 (2024). https://doi.org/10.1007/s00012-023-00830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-023-00830-8

Keywords

Mathematics Subject Classification

Navigation