Skip to main content
Log in

A frame-theoretic perspective on Esakia duality

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We introduce the category of Heyting frames, those coherent frames L in which the compact elements form a Heyting subalgebra of L, and show that it is equivalent to the category of Heyting algebras and dually equivalent to the category of Esakia spaces. This provides a frame-theoretic perspective on Esakia duality for Heyting algebras. We also generalize these results to the setting of Brouwerian algebras and Brouwerian semilattices by introducing the corresponding categories of Brouwerian frames and extending the above equivalences and dual equivalences. This provides a frame-theoretic perspective on generalized Esakia duality for Brouwerian algebras and Brouwerian semilattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., Kurz, A.: Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comput. Sci. 20(3), 359–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili, G., Carai, L., Morandi, P.J.: Deriving Priestley duality and its generalizations from Pontryagin duality for semilattices (2022). Submitted. Available at arXiv:2207.13938

  3. Bezhanishvili, G., Jansana, R.: Priestley style duality for distributive meet-semilattices. Studia Logica 98(1–2), 83–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezhanishvili, G., Jansana, R.: Esakia style duality for implicative semilattices. Appl. Categ. Struct. 21(2), 181–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezhanishvili, G., Moraschini, T., Raftery, J.G.: Epimorphisms in varieties of residuated structures. J. Algebra 492, 185–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharjee, P.: Two spaces of minimal primes. J. Algebra Appl. 11(1), 1250014 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.: Lattice Theory. Vol. 25, 3rd edn. American Mathematical Society Colloquium Publications, Providence (1979)

  8. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. The Clarendon Press, Oxford University Press, New York (1997)

  9. Cornish, W.H.: On H. Priestley’s dual of the category of bounded distributive lattices. Mat. Vesnik 12(27)(4), 329–332 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Davey, B.A., Galati, J.C.: A coalgebraic view of Heyting duality. Studia Logica 75(3), 259–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esakia, L.L.: Topological Kripke models. Soviet Math. Dokl. 15, 147–151 (1974)

    MATH  Google Scholar 

  12. Esakia, L.L.: Heyting Algebras: Duality Theory. Translated from the Russian by A. Evseev. Bezhanishvili, G., Holliday, W. (eds.) Trends in Logic, vol. 50. Springer, Berlin (2019)

  13. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York-Heidelberg (1977)

    Book  Google Scholar 

  15. Iberkleid, W., McGovern, W.W.: A natural equivalence for the category of coherent frames. Algebra Universalis 62(2–3), 247–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)

  17. Köhler, P.: Varieties of Brouwerian algebras. Mitt. Math. Sem. Giessen (116), iii+83 (1975)

  18. Köhler, P.: Brouwerian semilattices. Trans. Am. Math. Soc. 268(1), 103–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Köhler, P., Pigozzi, D.: Varieties with equationally definable principal congruences. Algebra Universalis 11(2), 213–219 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nemitz, W.C.: Implicative semi-lattices. Trans. Am. Math. Soc. 117, 128–142 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2012)

    Book  MATH  Google Scholar 

  22. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 3(24), 507–530 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Priestley, H.A.: Ordered sets and duality for distributive lattices. In: Orders: Description and Roles (L’Arbresle, 1982), North-Holland Math. Stud., vol. 99, pp. 39–60. North-Holland, Amsterdam (1984)

    Google Scholar 

  25. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41. Państwowe Wydawnictwo Naukowe, Warsaw (1963)

  26. Stone, M.H.: Topological representations of distributive lattices and Brouwerian logics. Čas. Mat. Fys. 67, 1–25 (1937)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Carai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Presented by N. Galatos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Carai acknowledges financial support from the Juan de la Cierva-Formación 2021 programme (FJC2021-046977-I) funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhanishvili, G., Carai, L. & Morandi, P.J. A frame-theoretic perspective on Esakia duality. Algebra Univers. 84, 30 (2023). https://doi.org/10.1007/s00012-023-00827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-023-00827-3

Keywords

Mathematics Subject Classification

Navigation