Skip to main content
Log in

Projectivity in (bounded) commutative integral residuated lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In this paper, we study projective algebras in varieties of (bounded) commutative integral residuated lattices. We make use of a well-established construction in residuated lattices, the ordinal sum, and the order property of divisibility. Via the connection between projective and splitting algebras, we show that the only finite projective algebra in \(\mathsf {{FL}_{ew}}\) is the two-element Boolean algebra. Moreover, we show that several interesting varieties have the property that every finitely presented algebra is projective, such as locally finite varieties of hoops. Furthermore, we show characterization results for finite projective Heyting algebras, and finitely generated projective algebras in locally finite varieties of bounded hoops and BL-algebras. Finally, we connect our results with the algebraic theory of unification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aglianò, P.: Splittings in GBL-algebras I: the general case. Fuzzy Sets Syst. 373, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Aglianò, P.: Splittings in GBL-algebras II: the representable case. Fuzzy Sets Syst. 373, 19–36 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Aglianò, P.: Varieties of BL-algebras III: splitting algebras. Stud. Log. 107, 1235–1259 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Aglianò, P.: A short note on divisible residuated semilattices. Soft Comput. 24, 259–266 (2020)

    MATH  Google Scholar 

  5. Aglianò, P., Ferreirim, I., Montagna, F.: Basic hoops: an algebraic study of continuous \(t\)-norms. Stud. Log. 87(1), 73–98 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181, 105–129 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Aglianò, P., Ugolini, S.: MTL-algebras as rotations of basic hoops. J. Logic Comput. 20, 763–784 (2021)

    MATH  Google Scholar 

  8. Aglianò, P., Ugolini, S.: Projectivity and unification in substructural logics of generalized rotations (2022). Submitted

  9. Aglianò, P., Ursini, A.: On subtractive varieties II: general properties. Algebra Univ. 36, 222–259 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices. Algebra Univers. 50, 83–106 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Balbes, R.: Projective and injective distributive lattices. Pacific. J. Math. 21, 405–420 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Balbes, R., Horn, A.: Injective and projective Heyting algebras. Trans. Amer. Math. Soc. 148, 549–559 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Beynon, W.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Can. J. Math. 29, 243–254 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Blok, W., Ferreirim, I.: Hoops and their implicational reducts (abstract). Algebr. Methods Logic Comput. Sci. Banach Center Publ. 28, 219–230 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Blok, W., Ferreirim, I.: On the structure of hoops. Algebra Univers. 43, 233–257 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Blok, W., Pigozzi, D.: Algebraizable Logics. No. 396 in Mem. of the Amer. Math. Soc. American Mathematical Society, Providence, Rhode Island (1989)

  17. Blok, W., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences III. Algebra Univers. 32, 545–608 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Blok, W., Raftery, J.: Varieties of commutative residuated integral pomonoids and their residuation subreducts. J. Algebra 190, 280–328 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Blount, K., Tsinakis, C.: The structure of residuated lattices. Internat. J. Algebra Comput. 13(4), 437–461 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Berlin (1981)

    MATH  Google Scholar 

  21. Cabrer, L., Mundici, D.: Projective MV-algebras and rational polyhedra. Algebra Univers. 62, 63–74 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Castaño, D., Varela, J.D., Torrens, A.: Free-decomposability in varieties of pseudocomplemented residuated lattices. Stud. Log. 98, 223–235 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Cignoli, R., Torrens, A.: Glivenko like theorems in natural expansions of BCK-logic. Math. Log. Q. 50, 111–125 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Cignoli, R., Torrens, A.: Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term. Stud. Log. 100, 1107–1136 (2012)

    MathSciNet  MATH  Google Scholar 

  25. D’Antona, O., Marra, V.: Computing coproducts of finitely presented Gödel algebras. Ann. Pure Appl. Logic 142, 202–211 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Di Nola, A., Grigolia, R., Lettieri, A.: Projective MV-algebras. Int. J. Approx. Reason. 47, 323–332 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian \(\ell \)-groups. Stud. Log. 53, 417–432 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Dzik, W.: Unification in some substructural logics of BL-algebras and hoops. Rep. Math. Log. 43, 73–83 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271–288 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Ferreirim, I.: On a conjecture by Andrzej Wroński for BCK-algebras and subreducts of hoops. Scient. Math. Japonica. 53, 119–132 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Gabriel, P., Ullmer, F.: Lokar Präsentiertbare Kategorien. No. 221 in Lecture Notes in Mathematics. Springer, Berlin (1971)

    Google Scholar 

  32. Galatos, N.: Minimal varieties of residuated lattices. Algebra Univers. 52(2), 215–239 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logics and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  34. Ghilardi, S.: Unification through projectivity. J. Logic Comput. 7, 733–752 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Ghilardi, S.: Unification in intuitionistic logic. J. Symb. Log. 64, 859–890 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Gumm, H., Ursini, A.: Ideals in universal algebra. Algebra Univers. 19, 45–54 (1984)

    MathSciNet  MATH  Google Scholar 

  37. Hájek, P.: Metamathematics of Fuzzy Logic. No. 4 in Trends in Logic—Studia Logica Library. Kluwer Academic Publications, Dordrecht (1998)

    Google Scholar 

  38. Iséki, K.: An algebra related with a propositional calculus. Proc. Japan. Acad. 41, 26–29 (1962)

    MathSciNet  MATH  Google Scholar 

  39. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publisher, Dordrecht (1982)

    Google Scholar 

  40. Olson, J.S., Alten, C.V.: Structural completeness in substructural logics. Logic J. IGPL 16(5), 453–495 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Köhler, P.: Brouwerian semilattices. Trans. Amer. Math. Soc. 20, 103–126 (1981)

    MathSciNet  MATH  Google Scholar 

  42. Kowalski, T., Ono, H.: Splitting in the variety of residuated lattices. Algebra Univers. 44, 283–298 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Marra, V., Spada, L.: Duality, projectivity, and unification in łukasiewicz logic and MV-algebras. Ann. Pure Appl. Logic 164, 192–210 (2013)

    MathSciNet  MATH  Google Scholar 

  44. McKenzie, R.: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc. 174, 1–43 (1972)

    MathSciNet  MATH  Google Scholar 

  45. Nation, J.: Finite sublattices of a free lattice. Trans. Amer. Math. Soc. 269, 311–337 (1982)

    MathSciNet  MATH  Google Scholar 

  46. Nishimura, I.: On formulas of one variable in intuitionistic propositional calculus. J. Symb. Log. 25, 327–331 (1960)

    MathSciNet  MATH  Google Scholar 

  47. Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)

    MathSciNet  MATH  Google Scholar 

  48. Quackenbush, R.: Demi-semi-primal algebras and Mal’cev type conditions. Math. Z. 122, 166–176 (1971)

    MathSciNet  MATH  Google Scholar 

  49. Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)

    MathSciNet  MATH  Google Scholar 

  50. Robinson, J.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)

    MathSciNet  MATH  Google Scholar 

  51. Spinks, M., Veroff, R.: On a homomorphism property of hoops. Bull. Sect. Logic 33, 135–142 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Ugolini, S.: The polyhedral geometry of Wajsberg hoops (2022). arXiv:2201.07009 (Submitted)

  53. Ward, L., Dilworth, R.: Residuated lattices. Trans. Amer. Math. Soc. 45, 335–354 (1939)

    MathSciNet  MATH  Google Scholar 

  54. Whitman, P.: Free lattices. Ann. Math. 42, 325–330 (1941)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee who suggested an improvement of Lemma 3.1. The authors declare that this work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement No 890616 awarded to Ugolini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Ugolini.

Additional information

Presented by N. Galatos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aglianò, P., Ugolini, S. Projectivity in (bounded) commutative integral residuated lattices. Algebra Univers. 84, 2 (2023). https://doi.org/10.1007/s00012-022-00798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-022-00798-x

Keywords

Mathematics Subject Classification

Navigation