Skip to main content
Log in

Complete congruence lattices of two related modular lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

By a 1991 result of R. Freese, G. Grätzer, and E. T. Schmidt, every complete lattice A is isomorphic to the lattice Com(K) of complete congruences of a strongly atomic, 3-distributive, complete modular lattice K. In 2002, Grätzer and Schmidt improved 3-distributivity to 2-distributivity. Here, we represent morphisms between two complete lattices with complete lattice congruences in three ways. Namely, for \({i \in \{1, 2, 3\},}\) let \({A_i}\) and \({A^{\prime}_{i}}\) be arbitrary complete lattices and let \({f_i}\) : \({A_{i} \rightarrow A^{\prime}_{i}}\) be maps such that (i) \({f_1}\) is \({(\bigvee, 0)}\)-preserving and 0-separating, (ii) \({f_2}\) is \({(\bigwedge, 0, 1)}\)-preserving, and (iii) \({f_3}\) is \({(\bigvee, 0)}\)-preserving. We prove that for \({i \in \{1, 2, 3\},}\) there exist strongly atomic, 2-distributive, complete modular lattices \({K_i}\) and \({K^{\prime}_{i}}\) such that \({A_{i} \cong {\rm Com}({K_{i}}), A^{\prime}_{i} \cong {\rm Com}({K^{\prime}_{i}}),}\) and, in addition, (i) \({K_1}\) is a principal ideal of \({{K^{\prime}_{1}}}\) and \({f_1}\) is represented by complete congruence extension, (ii) \({K^{\prime}_{2}}\) is a sublattice of \({K_2}\) and \({f_2}\) is represented by restriction, and (iii) \({f_3}\) is represented as the composite of a map naturally induced by a complete lattice homomorphism from \({K_3}\) to \({K^{\prime}_{3}}\) and the complete congruence generation in \({K^{\prime}_{3}}\). Also, our approach yields a relatively easy construction that proves the above-mentioned 2002 result of Grätzer and Schmidt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borceux, F.: Handbook of Categorical Algebra 1. Basic Category Theory. Cambridge Univ. Press, Cambridge (1994)

  2. Czédli G.: Which distributive lattices have 2-distributive sublattice lattices? Acta Math. Acad. Sci. Math. Hungar. 35, 455–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Czédli G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fraser G.A., Horn A.: Congruence relations in direct products. Proc. Amer. Math. Soc. 26, 390–394 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Freese, R.: Minimal modular congruence varieties. Abstract 76T-A14. Amer. Math. Soc. Notices 23, No.1, A-4 (1976)

  6. Freese R., Grätzer G., Schmidt E.T.: On complete congruence lattices of complete modular lattices. Internat. J. Algebra Comput. 1, 147–160 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grätzer, G.: On the automorphism group and the complete congruence lattice of a complete lattice. Abstract 88T-05-215, Abstracts Amer. Math. Soc. 9, 416 (1988)

  8. Grätzer, G.: The complete congruence lattice of a complete lattice. In: Almeida, J., Bordalo, G., Dwinger, Ph. (eds) Lattices, semigroups, and universal algebra, pp. 81–87. (Proc. Conf. Lisbon, 1988) Plenum Press, New York (1990)

  9. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

  10. Grätzer G.: A technical lemma for congruences of finite lattices. Algebra Universalis 72, 53–55 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grätzer G.: Congruences and prime-perspectivities in finite lattices. Algebra Universalis 74, 351–359 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grätzer, G.: The Congruences of a Finite Lattice. A Proof-by-Picture Approach. (2nd ed.) Birkhäuser, Basel (2016)

  13. Grätzer G., Johnson P.M., Schmidt E.T.: A representation of m-algebraic lattices. Algebra Universalis 32, 1–12 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grätzer G., Knapp E.: Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math.(Szeged) 75, 29–48 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Grätzer G., Lakser H.: Homomorphisms of distributive lattices as restrictions of congruences. Can. J. Math. 38, 1122–1134 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grätzer G., Lakser H.: On complete congruence lattices of complete lattices. Trans. Amer. Math. Soc. 327, 385–405 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grätzer G., Lakser H.: On congruence lattices of m-complete lattices. J. Austral. Math. Soc. Ser. A 52, 57–87 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grätzer, G., Lakser, H., Schmidt, E.T.: Congruence representations of join-homomorphisms of distributive lattices: a short proof. Math. Slovaca 46, 363–369 (1996)

  19. Grätzer G., Lakser H., Schmidt E.T.: Isotone maps as maps of congruences. I. Abstract maps. Acta Math. Acad. Sci. Hungar. 75, 105–135 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grätzer G., Lakser H., Schmidt E.T.: Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41, 290–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Grätzer G., Lakser H., Schmidt E.T.: Isotone maps as maps of congruences. II. Concrete maps. Acta Math. Acad. Sci. Hungar. 92, 233–238 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grätzer G., Quackenbush R.W, Schmidt E.T.: Congruence-preserving extensions of finite lattices to isoform lattices. Acta Sci. Math. (Szeged) 70, 473–494 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Grätzer, G., Lakser, H., Wolk, B.: On the lattice of complete congruences of a complete lattice: on a result of K. Reuter and R. Wille. Acta Sci. Math. (Szeged) 55, 3–8 (1991)

  24. Grätzer G., Schmidt E.T.: On congruence lattices of lattices. Acta Math. Acad. Sci. Hungar. 13, 179–185 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grätzer G., Schmidt E.T.: “Complete-simple distributive lattices”. Proc. Amer. Math. Soc. 119, 63–69 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grätzer G., Schmidt E.T.: Another construction of complete-simple distributive lattices. Acta Sci. Math. (Szeged) 58, 115–126 (1993)

    MATH  MathSciNet  Google Scholar 

  27. Grätzer, G., Schmidt, E.T.: Algebraic lattices as congruence lattices: The m-complete case. In: Lattice theory and its applications (Darmstadt, 1991). Res. Exp. Math., vol. 23, pp. 91–101. Heldermann, Lemgo (1995)

  28. Grätzer, G., Schmidt, E.T.: Do we need complete-simple distributive lattices? Algebra Universalis 33, 140–141 (1995)

  29. Grätzer G., Schmidt E.T.: Complete congruence lattices of complete distributive lattices. J. Algebra 171, 204–229 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Grätzer G., Schmidt E.T.: Complete congruence representations with 2-distributive modular lattices. Acta Sci. Math. (Szeged) 67, 39–50 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Grätzer G., Schmidt E.T., Thomsen K.: Congruence lattices of uniform lattices. Houston J. Math. 29, 247–263 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Hales A.W.: On the non-existence of free complete Boolean algebras. Fund. Math. 54, 45–66 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  33. Herrmann, C.: S-verklebte Summen von Verbänden. Math. Z. 130, 255–274 (1973) (German)

  34. Herrmann, C., Huhn, A.P.: Lattices of normal subgroups which are generated by frames. In: Proceedings of the Lattice Theory Colloquium (Szeged 1974). Colloq. Math. Soc. János Bolyai, Vol. 14, pp. 97–136. North-Holland, Amsterdam (1976)

  35. Huhn A.P.: Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33, 297–305 (1972)

    MATH  MathSciNet  Google Scholar 

  36. Jakubík, J.: Congruence relations and weak projectivity in lattices. Časopis Pěst. Mat. 80, 206-2016 (1955) (Slovak)

  37. Teo S.-K.: Representing finite lattices as complete congruence lattices of complete lattices. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 33, 177–182 (1990)

    MathSciNet  Google Scholar 

  38. Wehrung F.: A solution to Dilworth’s congruence lattice problem. Adv. Math. 216, 610–625 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wille R.: Subdirect decompositions of concept lattices. Algebra Universalis 17, 275–287 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Czédli.

Additional information

Presented by F. Wehrung.

Dedicated to George Grätzer on his eightieth birthday

This research was supported by NFSR of Hungary (OTKA), grant number K 115518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G. Complete congruence lattices of two related modular lattices. Algebra Univers. 78, 251–289 (2017). https://doi.org/10.1007/s00012-017-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0457-9

2010 Mathematics Subject Classification

Key words and phrases

Navigation