Skip to main content
Log in

Deficiency of INPP4A promotes M2 macrophage polarization in eosinophilic chronic rhinosinusitis with nasal polyps

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The treatment of eosinophilic chronic rhinosinusitis with nasal polyps (E-CRSwNP) remains a challenge due to its complex pathogenesis. Inositol polyphosphate-4-phosphatase type IA (INPP4A), a lipid phosphatase, has been implicated in allergic asthma. However, the expression and function of INPP4A in E-CRSwNP remain unclear. This study aims to investigate the role of INPP4A in macrophages in E-CRSwNP.

Methods

We assessed the expression of INPP4A in human and mouse nasal mucosal tissues via immunofluorescence staining. THP-1 cells were cultured and exposed to various cytokines to investigate the regulation of INPP4A expression and its functional role. Additionally, we established a murine nasal polyp (NP) model and administrated an INPP4A-overexpressing lentivirus evaluate its impact on NP.

Results

The percentage of INPP4A + CD68 + macrophages among total macrophages decreased in the E-CRSwNP group compared to the control and the non-eosinophilic CRSwNP (NE-CRSwNP) groups, exhibiting an inverse correlation with an increased percentage of CD206 + CD68 + M2 macrophages among total macrophages. Overexpression of INPP4A led to a reduced percentage of THP-1 cells polarizing towards the M2 phenotype, accompanied by decreased levels of associated chemotactic factors including CCL18, CCL22, CCL24, and CCL26. We also validated the involvement of the PI3K-AKT pathway in the function of INPP4A in vitro. Furthermore, INPP4A overexpression in the murine NP model resulted in the attenuation of eosinophilic inflammation in the nasal mucosa.

Conclusions

INPP4A deficiency promotes macrophage polarization towards the M2 phenotype, leading to the secretion of chemokines that recruit eosinophils and Th2 cells, thereby amplifying eosinophilic inflammation in E-CRSwNP. INPP4A may exert a suppressive role in eosinophilic inflammation and could potentially serve as a novel therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and materials used to support the findings of this study are available from the corresponding author upon request.

References

  1. Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58((Suppl S29)):1–464. https://doi.org/10.4193/Rhin20.600.

    Article  PubMed  Google Scholar 

  2. Wang X, Zhang N, Bo M, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–53. https://doi.org/10.1016/j.jaci.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Gevaert E, Lou H, et al. Chronic rhinosinusitis in Asia. J Allergy Clin Immunol. 2017;140(5):1230–9. https://doi.org/10.1016/j.jaci.2017.09.009.

    Article  PubMed  Google Scholar 

  4. Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy. 2022;77(3):812–26. https://doi.org/10.1111/all.15074.

    Article  PubMed  Google Scholar 

  5. Liao B, Liu JX, Li ZY, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018;73(7):1459–69. https://doi.org/10.1111/all.13411.

    Article  CAS  PubMed  Google Scholar 

  6. Yao Y, Wang ZC, Liu JX, et al. Increased expression of TIPE2 in alternatively activated macrophages is associated with eosinophilic inflammation and disease severity in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2017;7(10):963–72. https://doi.org/10.1002/alr.21984.

    Article  PubMed  Google Scholar 

  7. Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy. 2011;66(3):396–403. https://doi.org/10.1111/j.1398-9995.2010.02498.x.

    Article  CAS  PubMed  Google Scholar 

  8. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1–14. https://doi.org/10.1016/j.trsl.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Marshall AJ. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal. 2015;27(9):1789–98. https://doi.org/10.1016/j.cellsig.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  10. Khanna K, Chaudhuri R, Aich J, et al. Secretory inositol polyphosphate 4-phosphatase protects against airway inflammation and remodeling. Am J Respir Cell Mol Biol. 2019;60(4):399–412. https://doi.org/10.1165/rcmb.2017-0353OC.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Aich J, Mabalirajan U, Ahmad T, Agrawal A, Ghosh B. Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation. Nat Commun. 2012;3:877. https://doi.org/10.1038/ncomms1880.

    Article  CAS  PubMed  Google Scholar 

  12. Tan H, Tong X, Gao Z, et al. The hMeDIP-Seq identified INPP4A as a novel biomarker for eosinophilic chronic rhinosinusitis with nasal polyps. Epigenomics. 2022. https://doi.org/10.2217/epi-2022-0053.

    Article  PubMed  Google Scholar 

  13. Lee M, Kim DW, Yoon H, et al. Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol. 2016;137(1):87-98.e7. https://doi.org/10.1016/j.jaci.2015.07.026.

    Article  CAS  PubMed  Google Scholar 

  14. Bae JS, Ryu G, Kim JH, et al. Effects of Wnt signaling on epithelial to mesenchymal transition in chronic rhinosinusitis with nasal polyp. Thorax. 2020;75(11):982–93. https://doi.org/10.1136/thoraxjnl-2019-213916.

    Article  PubMed  Google Scholar 

  15. Shi LL, Ma J, Deng YK, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2021;76(2):497–509. https://doi.org/10.1111/all.14287.

    Article  CAS  PubMed  Google Scholar 

  16. Schraivogel D, Gschwind AR, Milbank JH, et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat Methods. 2020;17(6):629–35. https://doi.org/10.1038/s41592-020-0837-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wen S, Li F, Tang Y, et al. MIR222HG attenuates macrophage M2 polarization and allergic inflammation in allergic rhinitis by targeting the miR146a-5p/TRAF6/NF-κB axis. Front Immunol. 2023;14:1168920. https://doi.org/10.3389/fimmu.2023.1168920.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhou H, Zhang W, Qin D, et al. Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. Int Immunopharmacol. 2022;110:109012. https://doi.org/10.1016/j.intimp.2022.109012.

    Article  CAS  PubMed  Google Scholar 

  19. Wang ZC, Yao Y, Wang N, et al. Deficiency in interleukin-10 production by M2 macrophages in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2018;8(11):1323–33. https://doi.org/10.1002/alr.22218.

    Article  PubMed  Google Scholar 

  20. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol (Baltimore, MD: 1950). 2017. https://doi.org/10.4049/jimmunol.1601515.

    Article  Google Scholar 

  21. Zhuang C, Guo Z, Zhu J, et al. PTEN inhibitor attenuates cardiac fibrosis by regulating the M2 macrophage phenotype via the PI3K/AKT/TGF-β/Smad 2/3 signaling pathway. Int J Cardiol. 2022;356:88–96. https://doi.org/10.1016/j.ijcard.2022.04.007.

    Article  PubMed  Google Scholar 

  22. Wang W, Xu Y, Wang L, et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 2022;23(10):1484–94. https://doi.org/10.1038/s41590-022-01312-0.

    Article  CAS  PubMed  Google Scholar 

  23. Leite-Santos F, Tamashiro E, de Andrade Batista Murashima A, Anselmo-Lima WT, Valera FCP. Which are the best murine models to study Eosinophilic Chronic Rhinosinusitis? A contemporary review. Braz J Otorhinolaryngol. 2023;89(6):101328. https://doi.org/10.1016/j.bjorl.2023.101328.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Takabayashi T, Schleimer RP. Formation of nasal polyps: the roles of innate type 2 inflammation and deposition of fibrin. J Allergy Clin Immunol. 2020;145(3):740–50. https://doi.org/10.1016/j.jaci.2020.01.027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022. https://doi.org/10.1016/j.jaci.2022.02.016.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhou Y, Zhang T, Yan Y, et al. MicroRNA-223-3p regulates allergic inflammation by targeting INPP4A. Braz J Otorhinolaryngol. 2021;87(5):591–600. https://doi.org/10.1016/j.bjorl.2020.05.020.

    Article  PubMed  Google Scholar 

  27. Ho J, Earls P, Harvey RJ. Systemic biomarkers of eosinophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2020;20(1):23–9. https://doi.org/10.1097/ACI.0000000000000602.

    Article  CAS  PubMed  Google Scholar 

  28. Huang GJ, Chen ZQ, Fan ZJ, Li SH. The causal association between peripheral blood eosinophils and nasal polyps: a Mendelian randomization study. Eur Arch Otorhinolaryngol. 2023;280(9):4285–90. https://doi.org/10.1007/s00405-023-08129-z.

    Article  PubMed  Google Scholar 

  29. Drake VE, Rafaels N, Kim J. Peripheral blood eosinophilia correlates with hyperplastic nasal polyp growth. Int Forum Allergy Rhinol. 2016;6(9):926–34. https://doi.org/10.1002/alr.21793.

    Article  PubMed  Google Scholar 

  30. Haimerl P, Bernhardt U, Schindela S, et al. Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. J Allergy Clin Immunol. 2021;147(2):587–99. https://doi.org/10.1016/j.jaci.2020.04.064.

    Article  CAS  PubMed  Google Scholar 

  31. Zhong B, Du J, Liu F, et al. Activation of the mTOR/HIF-1α/VEGF axis promotes M1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2022;77(2):643–6. https://doi.org/10.1111/all.15050.

    Article  CAS  PubMed  Google Scholar 

  32. Yu Z, Wang Y, Zhang J, et al. Expression of heme oxygenase-1 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps: modulation by cytokines. Int Forum Allergy Rhinol. 2015;5(8):734–40. https://doi.org/10.1002/alr.21530.

    Article  PubMed  Google Scholar 

  33. Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517–22. https://doi.org/10.1073/pnas.1119038109.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ma B, Athari SS, Mehrabi Nasab E, Zhao L. PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation. 2021;44(5):1895–907. https://doi.org/10.1007/s10753-021-01466-3.

    Article  CAS  PubMed  Google Scholar 

  35. Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4:45. https://doi.org/10.1038/s41392-019-0079-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834. https://doi.org/10.1038/ncomms3834.

    Article  CAS  PubMed  Google Scholar 

  37. Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27(4):286–96. https://doi.org/10.1016/j.smim.2015.08.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Weisser SB, McLarren KW, Voglmaier N, et al. Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur J Immunol. 2011;41(6):1742–53. https://doi.org/10.1002/eji.201041105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang X, Luo G, Zhang K, et al. Hypoxic Tumor-Derived exosomal miR-301a Mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018;78(16):4586–98. https://doi.org/10.1158/0008-5472.CAN-17-3841.

    Article  CAS  PubMed  Google Scholar 

  40. Liu L, Zhu X, Zhao T, Yu Y, Xue Y, Zou H. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology (Oxford). 2019;58(9):1674–83. https://doi.org/10.1093/rheumatology/kez165.

    Article  CAS  PubMed  Google Scholar 

  41. Fang J, Ou Q, Wu B, et al. TcpC inhibits M1 but promotes M2 macrophage polarization via regulation of the MAPK/NF-κB and Akt/STAT6 pathways in urinary tract infection. Cells. 2022;11(17):2674. https://doi.org/10.3390/cells11172674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhang A, Xu Y, Xu H, et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 2021;11(8):3839–52. https://doi.org/10.7150/thno.53749.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mommert S, Schaper JT, Schaper-Gerhardt K, Gutzmer R, Werfel T. Histamine increases Th2 cytokine-induced CCL18 expression in human M2 macrophages. Int J Mol Sci. 2021;22(21):11648. https://doi.org/10.3390/ijms222111648.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee SH, Chaves MM, Kamenyeva O, et al. M2-like, IL-4/CCL24-mediated eosinophils in cutaneous leishmaniasis. Sci Immunol. 2020;5(46):eaaz4415. https://doi.org/10.1126/sciimmunol.aaz4415.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lou H, Huang Y, Chen H, Wang Y, Zhang L, Wang C. M2 macrophages correlated with symptom severity and promote type 2 inflammation in allergic rhinitis. Allergy. 2019;74(11):2255–7. https://doi.org/10.1111/all.13852.

    Article  PubMed  Google Scholar 

  46. Vestergaard C, Deleuran M, Gesser B, Larsen CG. Thymus- and activation-regulated chemokine (TARC/CCL17) induces a Th2-dominated inflammatory reaction on intradermal injection in mice. Exp Dermatol. 2004;13(4):265–71. https://doi.org/10.1111/j.0906-6705.2004.00149.x.

    Article  CAS  PubMed  Google Scholar 

  47. Araujo-Pires AC, Vieira AE, Francisconi CF, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res. 2015;30(3):412–22. https://doi.org/10.1002/jbmr.2376.

    Article  CAS  PubMed  Google Scholar 

  48. Pinho V, Oliveira SH, Souza DG, et al. The role of CCL22 (MDC) for the recruitment of eosinophils during allergic pleurisy in mice. J Leukoc Biol. 2003;73(3):356–62. https://doi.org/10.1189/jlb.0502243.

    Article  CAS  PubMed  Google Scholar 

  49. Kim B, Lee HJ, Im NR, et al. Decreased expression of CCL17 in the disrupted nasal polyp epithelium and its regulation by IL-4 and IL-5. PLoS ONE. 2018;13(5):e0197355. https://doi.org/10.1371/journal.pone.0197355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wang H, Hu DQ, Xiao Q, et al. Defective STING expression potentiates IL-13 signaling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(5):1692–703. https://doi.org/10.1016/j.jaci.2020.12.623.

    Article  CAS  PubMed  Google Scholar 

  51. Peterson S, Poposki JA, Nagarkar DR, et al. Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;129(1):119–27. https://doi.org/10.1016/j.jaci.2011.08.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (82271134, 81770986, 82071017); Fundamental Research Funds for the Central Universities (2042020kf1044, 2041022kf1113).

Author information

Authors and Affiliations

Authors

Contributions

YX provided funding, supervision, writing-review and editing; YYX designed the study,performed experiments, analysed data and drafted original article; TXT, PQL, JYH, SYC,DL, TG,YLX and DG assessed, recorded the patients health information and collected the samples of participants; All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yu Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Tong, X., Liu, P. et al. Deficiency of INPP4A promotes M2 macrophage polarization in eosinophilic chronic rhinosinusitis with nasal polyps. Inflamm. Res. 73, 581–595 (2024). https://doi.org/10.1007/s00011-024-01855-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01855-y

Keywords

Navigation