Skip to main content

Advertisement

Log in

Activation of LXRs alleviates neuropathic pain-induced cognitive dysfunction by modulation of microglia polarization and synaptic plasticity via PI3K/AKT pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Cognitive dysfunction is a common comorbidity in patients with chronic pain. Activation of Liver X receptors (LXRs) plays a potential role in improving cognitive disorders in central nervous diseases. In this study, we investigated the role of LXRs in cognitive deficits induced by neuropathic pain.

Methods

We established the spared nerve injury (SNI) model to investigate pain-induced memory dysfunction. Pharmacological activation of LXRs with T0901317 or inhibition with GSK2033 was applied. PI3K inhibitor LY294002 was administered to explore the underlying mechanism of LXRs. Changes in neuroinflammation, microglia polarization, and synaptic plasticity were assessed using biochemical technologies.

Results

We found that SNI-induced cognitive impairment was associated with reduced LXRβ expression, increased M1-phenotype microglia, decreased synaptic proteins, and inhibition of PI3K/AKT signaling pathway in the hippocampus. Activation of LXRs using T0901317 effectively alleviated SNI-induced cognitive impairment. Additionally, T0901317 promoted the polarization of microglia from M1 to M2, reduced pro-inflammatory cytokines, and upregulated synaptic proteins in the hippocampus. However, administration of GSK2033 or LY294002 abolished these protective effects of T0901317 in SNI mice.

Conclusions

LXRs activation alleviates neuropathic pain-induced cognitive impairment by modulating microglia polarization, neuroinflammation, and synaptic plasticity, at least partly via activation of PI3K/AKT signaling in the hippocampus. LXRs may be promising targets for addressing pain-related cognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information. Data is available upon request.

References

  1. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019;123:e273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Phelps CE, Navratilova E, Porreca F. Cognition in the chronic pain experience: preclinical insights. Trends Cogn Sci. 2021;25:365–76.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao W, Zhao L, Chang X, Lu X, Tu Y. Elevated dementia risk, cognitive decline, and hippocampal atrophy in multisite chronic pain. Proc Natl Acad Sci USA. 2023;120:e2215192120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Low LA. The impact of pain upon cognition: what have rodent studies told us? Pain. 2013;154:2603–5.

    Article  PubMed  Google Scholar 

  5. Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun. 2016;56:397–411.

    Article  CAS  PubMed  Google Scholar 

  6. Ren W-J, Liu Y, Zhou L-J, Li W, Zhong Y, Pang R-P, et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology. 2011;36:979–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gui W-S, Wei X, Mai C-L, Murugan M, Wu L-J, Xin W-J, et al. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain. 2016;12:174480691664678.

    Article  Google Scholar 

  8. Saffarpour S, Janzadeh A, Rahimi B, Ramezani F, Nasirinezhad F. Chronic nanocurcumin treatment ameliorates pain-related behavior, improves spatial memory, and reduces hippocampal levels of IL-1β and TNFα in the chronic constriction injury model of neuropathic pain. Psychopharmacology. 2021;238:877–86.

    Article  CAS  PubMed  Google Scholar 

  9. Vasic V, Schmidt M. Resilience and vulnerability to pain and inflammation in the hippocampus. IJMS. 2017;18:739.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Zhou L-J, Wang J, Li D, Ren W-J, Peng J, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37:871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci. 2022;16:980722.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cornell J, Salinas S, Huang H-Y, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2021;17:705–16.

    PubMed Central  Google Scholar 

  13. Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S, et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: a hypothesis. Alzheimers Dement. 2022;18:2327–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hisaoka-Nakashima K, Ohata K, Yoshimoto N, Tokuda S, Yoshii N, Nakamura Y, et al. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp Neurol. 2022;355:114146.

    Article  CAS  PubMed  Google Scholar 

  15. Guida F, Iannotta M, Misso G, Ricciardi F, Boccella S, Tirino V, et al. Long-term neuropathic pain behaviors correlate with synaptic plasticity and limbic circuit alteration: a comparative observational study in mice. Pain. 2022;163:1590–602.

    Article  PubMed  Google Scholar 

  16. Tyrtyshnaia A, Manzhulo I. Neuropathic pain causes memory deficits and dendrite tree morphology changes in mouse hippocampus. J Pain Res. 2020;13:345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, et al. Abnormalities in hippocampal functioning with persistent pain. J Neurosci. 2012;32:5747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tyrtyshnaia A, Bondar A, Konovalova S, Manzhulo I. Synaptamide improves cognitive functions and neuronal plasticity in neuropathic pain. Int J Mol Sci. 2021;22:12779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear receptors as therapeutic targets for neurodegenerative diseases: lost in translation. Annu Rev Pharmacol Toxicol. 2019;59:237–61.

    Article  CAS  PubMed  Google Scholar 

  20. Fitz NF, Nam KN, Koldamova R, Lefterov I. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer’s disease. Br J Pharmacol. 2019;176:3599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, et al. LXR agonists: new potential therapeutic drug for neurodegenerative diseases. Mol Neurobiol. 2013;48:715–28.

    Article  CAS  PubMed  Google Scholar 

  22. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loane DJ, Washington PM, Vardanian L, Pocivavsek A, Hoe H-S, Duff KE, et al. Modulation of ABCA1 by an LXR agonist reduces β-amyloid levels and improves outcome after traumatic brain injury. J Neurotrauma. 2011;28:225–36.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dai J, Xu S, Okada T, Liu Y, Zuo G, Tang J, et al. T0901317, an agonist of liver X receptors, attenuates neuronal apoptosis in early brain injury after subarachnoid hemorrhage in rats via liver X receptors/interferon regulatory factor/P53 upregulated modulator of apoptosis/dynamin-1-like protein pathway. Gebicki J, editor. Oxidat Med Cell Long. 2021;2021:1–16.

    Google Scholar 

  25. Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG, et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci. 2007;27:14470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu C, Wang M, Yu W, Rong Z, Zheng H-S, Sun T, et al. Activation of the hippocampal LXRβ improves sleep-deprived cognitive impairment by inhibiting neuroinflammation. Mol Neurobiol. 2021;58:5272–88.

    Article  CAS  PubMed  Google Scholar 

  27. Xu X, Xiao X, Yan Y, Zhang T. Activation of liver X receptors prevents emotional and cognitive dysfunction by suppressing microglial M1-polarization and restoring synaptic plasticity in the hippocampus of mice. Brain Behav Immun. 2021;94:111–24.

    Article  CAS  PubMed  Google Scholar 

  28. Sun T, Li YJ, Tian QQ, Wu Q, Feng D, Xue Z, et al. Activation of liver X receptor beta-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Exp Neurol. 2018;304:21–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Zacharek A, Cui X, Shehadah A, Jiang H, Roberts C, et al. Treatment of stroke with a synthetic liver X receptor agonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice. J Cereb Blood Flow Metab. 2010;30:102–9.

    Article  PubMed  Google Scholar 

  30. Cianciulli A, Porro C, Calvello R, Trotta T, Lofrumento DD, Panaro MA. Microglia mediated neuroinflammation: focus on PI3K modulation. Biomolecules. 2020;10:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Lin Y, Wang L, Zhan H, Luo X, Zeng Y, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging (Albany). 2020;12:20862–79.

    Article  CAS  Google Scholar 

  32. Han X, Cheng X, Xu J, Liu Y, Zhou J, Jiang L, et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology. 2022;219:109231.

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, Song D, Chen B, Yang X, Cheng O. Activation of liver X receptor promotes hippocampal neurogenesis and improves long-term cognitive function recovery in acute cerebral ischemia-reperfusion mice. J Neurochem. 2020;154:205–17.

    Article  CAS  PubMed  Google Scholar 

  34. Lu L, Liu X, Fu J, Liang J, Hou Y, Dou H. sTREM-1 promotes the phagocytic function of microglia to induce hippocampus damage via the PI3K–AKT signaling pathway. Sci Rep. 2022;12:7047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Xiong BR, Zhang LQ, Huang X, Zhou WC, Zou Q, et al. Disruption of the GABAergic system contributes to the development of perioperative neurocognitive disorders after anesthesia and surgery in aged mice. CNS Neurosci Ther. 2020;26:913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao JY, Xiong BR, Zhang W, Zhou WC, Yang H, Gao F, et al. PGE2-EP3 signaling exacerbates hippocampus-dependent cognitive impairment after laparotomy by reducing expression levels of hippocampal synaptic plasticity-related proteins in aged mice. CNS Neurosci Ther. 2018;24:917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L-Q, Gao S-J, Sun J, Li D-Y, Wu J-Y, Song F-H, et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation. 2022;19:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation. 2021;18:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan X, Han S, Manyande A, Gao F, Wang J, Zhang W, et al. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain. 2023;27:289–302.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang LQ, Zhang W, Li T, Yang T, Yuan X, Zhou Y, et al. GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-kappaB pathway in neuropathic pain mice. Neurobiol Learn Mem. 2021;182:107463.

    Article  CAS  PubMed  Google Scholar 

  41. Liu M-G, Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: challenges and perspectives. Prog Neurobiol. 2014;116:13–32.

    Article  PubMed  Google Scholar 

  42. Moriarty O, McGuire BE, Finn DP. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol. 2011;93:385–404.

    Article  PubMed  Google Scholar 

  43. McCarberg B, Peppin J. Pain pathways and nervous system plasticity: learning and memory in pain. Pain Med. 2019;20:2421–37.

    Article  PubMed  Google Scholar 

  44. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18:258.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu X-G. Normalization of neuroinflammation: a new strategy for treatment of persistent pain and memory/emotional deficits in chronic pain. JIR. 2022;15:5201–33.

    Article  CAS  Google Scholar 

  46. Torta R, Ieraci V, Zizzi F. A review of the emotional aspects of neuropathic pain: from comorbidity to co-pathogenesis. Pain Ther. 2017;6:11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Austin PJ, Fiore NT. Supraspinal neuroimmune crosstalk in chronic pain states. Curr Opin Physio. 2019;11:7–15.

    Article  Google Scholar 

  48. Brooks TA, Hawkins BT, Huber JD, Egleton RD, Davis TP. Chronic inflammatory pain leads to increased blood–brain barrier permeability and tight junction protein alterations. Am J Physiol Heart Circul Physiol. 2005;289:H738–43.

    Article  CAS  Google Scholar 

  49. Mai CL, Tan Z, Xu YN, Zhang JJ, Huang ZH, Wang D, et al. CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain. Theranostics. 2021;11:1059–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ding X, Gao X, Wang Z, Jiang X, Lu S, Xu J, et al. Preoperative chronic and acute pain affects postoperative cognitive function mediated by neurotransmitters. J Mol Neurosci. 2021;71:515–26.

    Article  CAS  PubMed  Google Scholar 

  51. Hisaoka-Nakashima K, Moriwaki K, Yoshimoto N, Yoshii T, Nakamura Y, Ago Y, et al. Anti-interleukin-6 receptor antibody improves allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation. Int Immunopharmacol. 2022;112:109219.

    Article  CAS  PubMed  Google Scholar 

  52. del Rey A, Yau H-J, Randolf A, Centeno MV, Wildmann J, Martina M, et al. Chronic neuropathic pain-like behavior correlates with IL-1β expression and disrupts cytokine interactions in the hippocampus. Pain. 2011;152:2827–35.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Jiang Y, Li J, Wang Y, Tian Y, Guo Q, et al. DUSP1 promotes microglial polarization toward M2 phenotype in the medial prefrontal cortex of neuropathic pain rats via inhibition of MAPK pathway. ACS Chem Neurosci. 2021;12:966–78.

    Article  CAS  PubMed  Google Scholar 

  54. Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9:42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ransohoff RM. A polarizing question: Do M1 and M2 microglia exist? Nat Neurosci. 2016;19:987–91.

    Article  CAS  PubMed  Google Scholar 

  56. Tampellini D, Capetillo-Zarate E, Dumont M, Huang Z, Yu F, Lin MT, et al. Effects of synaptic modulation on β-amyloid, synaptophysin, and memory performance in Alzheimer’s disease transgenic mice. J Neurosci. 2010;30:14299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Chen H-S, Li H-H, Wang H-J, Zou R-S, Lu X-J, et al. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav Immun. 2023;109:23–36.

    Article  CAS  PubMed  Google Scholar 

  58. Xiong B, Zhang W, Zhang L, Huang X, Zhou W, Zou Q, et al. Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction in rats with neuropathic pain. Pain. 2020;161:1824–36.

    Article  CAS  PubMed  Google Scholar 

  59. Zhai Q, Zhang Y, Ye M, Zhu S, Sun J, Wang Y, et al. Reducing complement activation during sleep deprivation yields cognitive improvement by dexmedetomidine. Br J Anaesth. 2023;131:542–55.

    Article  PubMed  Google Scholar 

  60. Xu F, Han L, Wang Y, Deng D, Ding Y, Zhao S, et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 2023;21:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egorova E, Starinets A, Tyrtyshnaia A, Ponomarenko A, Manzhulo I. Hippocampal neurogenesis in conditions of chronic stress induced by sciatic nerve injury in the rat. Cells Tissues Organs. 2019;207:58–68.

    Article  CAS  PubMed  Google Scholar 

  62. Fiore NT, Austin PJ. Glial-cytokine-neuronal adaptations in the ventral hippocampus of rats with affective behavioral changes following peripheral nerve injury. Neuroscience. 2018;390:119–40.

    Article  CAS  PubMed  Google Scholar 

  63. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454:470–7.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang R, Dong Y, Liu Y, Moezzi D, Ghorbani S, Mirzaei R, et al. Enhanced liver X receptor signalling reduces brain injury and promotes tissue regeneration following experimental intracerebral haemorrhage: roles of microglia/macrophages. Stroke Vasc Neurol. 2023;2023:1.

    CAS  Google Scholar 

  65. Pfrieger FW. Role of cholesterol in synapse formation and function. Biochim Biophys Acta. 2003;1610:271–80.

    Article  CAS  PubMed  Google Scholar 

  66. Li YJ, Zhang K, Sun T, Wang J, Guo YY, Yang L, et al. Epigenetic suppression of liver X receptor beta in anterior cingulate cortex by HDAC5 drives CFA-induced chronic inflammatory pain. J Neuroinflammation. 2019;16:132.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li X, Huang X, Feng Y, Wang Y, Guan J, Deng B, et al. Cylindrin from Imperata cylindrica inhibits M2 macrophage formation and attenuates renal fibrosis by downregulating the LXR-α/PI3K/AKT pathway. Eur J Pharmacol. 2023;950:175771.

    Article  CAS  PubMed  Google Scholar 

  68. Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, et al. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019;21:101121.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112:2853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee C-C, Huang C-C, Hsu K-S. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61:867–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81974170) and the Natural Science Foundation of Hubei Province (2021CFB341).

Author information

Authors and Affiliations

Authors

Contributions

ZW, TXB, and HSY worked on the experiment design. HSY, YXM, and ZFT conducted behavioral tests and biochemical experiments. HSY, YXM, ZFT, and ZW worked on data collection/analysis. The manuscript was drafted by HSY, ZW, and TXB. AM, GF, and WJ participated in the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wen Zhang or Xuebi Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Thiago Cunha.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 444 KB)

Supplementary file 2 (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Yuan, X., Zhao, F. et al. Activation of LXRs alleviates neuropathic pain-induced cognitive dysfunction by modulation of microglia polarization and synaptic plasticity via PI3K/AKT pathway. Inflamm. Res. 73, 157–174 (2024). https://doi.org/10.1007/s00011-023-01826-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01826-9

Keywords

Navigation