Skip to main content

Advertisement

Log in

Supraphysiological testosterone supplementation improves granulation tissue maturation through angiogenesis in the early phase of a cutaneous wound healing model in rats

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the effects of both testosterone depletion and supraphysiological testosterone supplementation in the early phase of an animal cutaneous wound healing model in comparison with the physiological hormonal condition.

Material and Methods

Forty rats were distributed into the following four groups: Control, Orchiectomy (OCX), Durateston (Dura) and OCX+Dura. On day 1, the testicles were removed (OCX group) and the rats (Dura group) received a supraphysiological dose (250 mg/kg) of exogenous testosterone weekly. After 15 days a full-thickness excisional skin wound was created in all animals, which was healed by the second intention for 7 days. On day 22, the rats were euthanatized and the wounds were harvested for histopathological evaluation, immunohistochemistry analyses and multiplex immunoassay. One-way ANOVA and post-hoc Tukey tests were performed.

Results

It was found that the supraphysiological testosterone level increased extracellular matrix deposition, promoted higher blood vessel formation and reduced wound contraction (p < 0.05). Additionally, it also stimulated PCNA-positive fibroblasts and KGF-positive cells (p < 0.05), while orchiectomy reduced the expression of IL-6 and TNF-α and increased VEGF and PDGF (p < 0.05) .

Conclusion

In conclusion, the results provide evidence that supraphysiological testosterone supplementation plays a positive role in the early phase of cutaneous wound healing, thus improving granulation tissue maturation through the enhancement of angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ustuner O, Anlas C, Bakirel T, Ustun-Alkan F, Sigirci BD, Ak S, Akpulat HA, Donmez C, Koca-Caliskan U. In Vitro evaluation of antioxidant, anti-inflammatory, antimicrobial and wound healing potential of Thymus Sipyleus Boiss. Subsp. Rosulans (Borbas) Jalas. Molecules. 2019;24(18):3353.

    Article  CAS  PubMed Central  Google Scholar 

  3. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  4. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang C, Lim J, Liu J, Ponugoti B, Alsadun S, Tian C, et al. FOXO1 expression in keratinocytes promotes connective tissue healing. Sci Rep. 2017;7:42834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romana-Souza B, Assis de Brito TL, Pereira GR, Monte-Alto-Costa A. Gonadal hormones differently modulate cutaneous wound healing of chronically stressed mice. Brain Behav Immun. 2014;36:101–10.

    Article  CAS  PubMed  Google Scholar 

  7. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediators Inflamm. 2017;2017:5217967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hardman MJ, Ashcroft GS. Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol. 2008;9:R80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chenu C, Adlanmerini M, Boudou F, Chantalat E, Guihot AL, Toutain C, et al. Testosterone prevents cutaneous ischemia and necrosis in males through complementaryestrogenic and androgenic actions. Arterioscler Thromb Vasc Biol. 2017;37(5):909–19.

    Article  CAS  PubMed  Google Scholar 

  11. Gilliver SC, Wu F, Ashcroft GS. Regulatory roles of androgens in cutaneous wound healing. Thromb Haemost. 2003;90(6):978–85.

    Article  CAS  PubMed  Google Scholar 

  12. Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest. 2002;110(5):615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fimmel S, Zouboulis CC. Influence of physiological androgen levels on wound healing and immune status in men. Aging Male. 2005;8(3–4):166–74.

    Article  CAS  PubMed  Google Scholar 

  14. Gilliver SC, Ashworth JJ, Mills SJ, Hardman MJ, Ashcroft GS. Androgens modulate the inflammatory response during acute wound healing. J Cell Sci. 2006;119(Pt 4):722–32.

    Article  CAS  PubMed  Google Scholar 

  15. Gilliver SC, Ashworth JJ, Ashcroft GS. The hormonal regulation of cutaneous wound healing. Clin Dermatol. 2007;25(1):56–62.

    Article  PubMed  Google Scholar 

  16. Soybir OC, Gürdal SÖ, Oran EŞ, Tülübaş F, Yüksel M, Akyıldız Aİ, Bilir A, Soybir GR. Delayed cutaneous wound healing in aged rats compared to younger ones. Int Wound J. 2012;9(5):478–87.

    Article  PubMed  Google Scholar 

  17. Gonçalves RV, Novaes RD, Sarandy MM, Damasceno EM, da Matta SL, de Gouveia NM, et al. 5α-Dihydrotestosterone enhances wound healing in diabetic rats. Life Sci. 2016;152:67–75.

    Article  PubMed  CAS  Google Scholar 

  18. Petroianu A, Veloso DFM, Alberti LR, Figueiredo JA, Carmo Rodrigues FHO, Carvalho E, Carneiro BGM. Hypoandrogenism related to early skin wound healing resistance in rats. Andrologia. 2010;42(2):117–20.

    Article  CAS  PubMed  Google Scholar 

  19. Gilliver SC, Ruckshanthi JP, Hardman MJ, Zeef LA, Ashcroft GS. 5alphadihydrotestosterone (DHT) retards wound closure by inhibiting reepithelialization. J Pathol. 2009;217:73–82.

    Article  CAS  PubMed  Google Scholar 

  20. Steffens JP, Coimbra LS, Ramalho-Lucas PD, Rossa C Jr, Spolidorio LC. The effect of supra and subphysiologic testosterone levels on ligature-induced bone loss in rats — a radiographic and histologic pilot study. J Periodontol. 2012;83(11):1432–9.

    Article  CAS  PubMed  Google Scholar 

  21. de Paiva GV, Ortega AAC, Steffens JP, Spolidorio DMP, Rossa C, Spolidorio LC. Long-term testosterone depletion attenuates inflammatory bone resorption in the ligature-induced periodontal disease model. J Periodontol. 2018;89(4):466–75.

    Article  CAS  Google Scholar 

  22. Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care. 2019;8:39–48.

    Article  Google Scholar 

  23. Steffens JP, Herrera BS, Coimbra LS, Stephens DN, Rossa C Jr, Spolidorio LC, et al. Testosterone regulates bone response to inflammation. Horm Metab Res. 2014;46(3):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steffens JP, Coimbra LS, Rossa C Jr, Kantarci A, Van Dyke TE, Spolidorio LC. Androgen receptors and experimental bone loss - an in vivo and in vitro study. Bone. 2015;81:683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, et al. FOXO1 differentially regulates both normal and diabetic wound healing. J Cell Biol. 2015;209(2):289–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vandenput L, Ohlsson C. Sex steroid metabolism in the regulation of bone health in men. J Steroid Biochem Mol Biol. 2010;121(3–5):582–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010;95(8):3955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maggio M, Basaria S, Ble A, Lauretani F, Bandinelli S, Ceda GP, et al. Correlation between testosterone and the infl ammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab. 2006;91(1):345–7.

    Article  CAS  PubMed  Google Scholar 

  29. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab. 2004;89(7):3313–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chodari L, Mohammadi M, Mohaddes G, Alipour MR, Ghorbanzade V, Dariushnejad H, et al. Testosterone and voluntary exercise, alone or together increase cardiac activation of AKT and ERK1/2 in diabetic rats. Arq Bras Cardiol. 2016;107(6):532–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chodari L, Mohammadi M, Ghorbanzadeh V, Dariushnejad H, Mohaddes G. Testosterone and voluntary exercise promote angiogenesis in hearts of rats with diabetes by enhancing expression of VEGF-A and SDF-1a. Can J Diabetes. 2016;40(5):436–41.

    Article  PubMed  Google Scholar 

  32. Eckes B, Nischt R, Krieg T. Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair. 2010;3:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Barker TH. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials. 2011;32:4211–4.

    Article  CAS  PubMed  Google Scholar 

  34. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    Article  CAS  PubMed  Google Scholar 

  35. Montico F, Hetzl AC, Cândido EM, Cagnon VH. Angiogenic and tissue remodeling factors in the prostate of elderly rats submitted to hormonal replacement. Anat Rec (Hoboken). 2013;296(11):1758–67.

    Article  CAS  Google Scholar 

  36. Hofer MD, Cheng EY, Bury MI, Xu W, Hong SJ, Kaplan WE, et al. Androgen supplementation in rats increases the inflammatory response and prolongs urethral healing. Urology. 2015;85(3):691–7.

    Article  PubMed  Google Scholar 

  37. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127(5):998–1008.

    Article  CAS  PubMed  Google Scholar 

  38. Marti G, Ferguson M, Wang J, Byrnes C, Dieb R, Qaiser R, Bonde P, Duncan MD, Harmon JW. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004;11(24):1780–5.

    Article  CAS  PubMed  Google Scholar 

  39. Gilliver SC, Ruckshanthi JP, Hardman MJ, Nakayama T, Ashcroft GS. Sex dimorphism in wound healing: the roles of sex steroids and macrophage migration inhibitory factor. Endocrinology. 2008;149:5747–57.

    Article  CAS  PubMed  Google Scholar 

  40. Kanda N, Watanabe S. 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression. J Invest Dermatol. 2004;123:319–28.

    Article  CAS  PubMed  Google Scholar 

  41. Peng Y, Wu S, Tang Q, Li S, Peng C. KGF-1 accelerates wound contraction through the TGF-beta1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 2019;294(21):8361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng C, Chen B, Kao HK, Murphy G, Orgill DP, Guo L. Lack of FGF-7 further delays cutaneous wound healing in diabetic mice. Plast Reconstr Surg. 2011;128(6):673e–84e.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by São Paulo State Research Support Foundation (FAPESP) – Number 2015/20281–0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius de Paiva Gonçalves.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

All animal procedures were conducted in compliance with Brazilian National Council for the Control of Animal Experimentation with ethical standards that fully comply with Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. The experimental protocol was approved by the Local Ethics Committee on the Use of Animals (Process CEUA/FOAr #47/2014).

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva Gonçalves, V., Steffens, J.P., Junior, C.R. et al. Supraphysiological testosterone supplementation improves granulation tissue maturation through angiogenesis in the early phase of a cutaneous wound healing model in rats. Inflamm. Res. 71, 473–483 (2022). https://doi.org/10.1007/s00011-022-01553-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01553-7

Keywords

Navigation