Skip to main content

Advertisement

Log in

Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Trimetazidine (TMZ) exerts a strong inhibitory effect on ischemia/reperfusion (I/R) injury. Inflammation plays a key role in I/R injury. We hypothesized that TMZ may protect cardiomyocytes from I/R injury by inhibiting inflammation.

Methods

The left anterior descending coronary artery was ligated for 30 min followed by 6 h of reperfusion to establish a model of I/R injury. H9c2 cardiomyocytes were subjected to 2 h of hypoxia and 3 h of normoxic conditions to establish a model of hypoxia/reoxygenation (H/R) injury. We monitored the change in pyroptosis by performing Western blot analysis, microscopy and ELISA.

Results

I/R and H/R treatment stimulated gasdermin D-N domain (GSDMD-N) expression in cardiomyocytes (sham onefold vs. I/R 2.5-fold; control onefold vs. H/R 2.0-fold). Moreover, TMZ increased the viability of H9c2 cardiomyocytes subjected to H/R treatment (H/R 65.0% vs. H/R + TMZ 85.3%) and reduced the infarct size in vivo (I/R 47.0% vs. I/R + TMZ 28.3%). H/R and I/R treatment increased the levels of TLR4, MyD88, phospho-NF-κB p65 and the NLRP3 inflammasome; however, TMZ reduced the expression of these proteins. Additionally, TMZ inhibited noncanonical inflammasome signaling induced by I/R injury.

Conclusions

In summary, TMZ alleviated pyroptosis induced by myocardial I/R injury through the TLR4/MyD88/NF-κB/NLRP3 inflammasome pathway. Therefore, TMZ represents an alternative treatment for myocardial I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAR:

Area at risk

CCK-8:

Cell counting kit-8

CK-MB:

Creatine kinase-MB

GSDMD-FL:

Gasdermin D-full length

GSDMD-N:

Gasdermin D-N domain

HE:

Hematoxylin and eosin

H/R:

Hypoxia/reoxygenation

INF:

Infarct size

I/R:

Ischemia/reperfusion

LAD:

Left anterior descending

LDH:

Lactate dehydrogenase

LV:

Left ventricle

TMZ:

Trimetazidine

TTC:

2,3,5-Triphenyltetrazolium chloride

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation. 2018;137(12):e67–492.

    Article  PubMed  Google Scholar 

  2. Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.

    Article  PubMed  Google Scholar 

  3. Hausenloy DJ, Yellon DM. Time to take myocardial reperfusion injury seriously. N Engl J Med. 2008;359(5):518–20.

    Article  CAS  PubMed  Google Scholar 

  4. Wu L, Tan J, Chen Z, Huang GJ. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol. 2019;114(5):39.

    Article  PubMed  Google Scholar 

  5. Engler RL, Dahlgren MD, Morris DD, Peterson MA, Schmid-Schonbein GW. Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol. 1986;251(2 Pt 2):H314–23.

    CAS  PubMed  Google Scholar 

  6. Suematsu M, DeLano F, Poole D, Engler R, Miyasaka M, Zweifach B, et al. Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation. Lab Invest. 1994;70(5):684–95.

    CAS  PubMed  Google Scholar 

  7. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  8. Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010;121(1):80–90.

    Article  CAS  PubMed  Google Scholar 

  10. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4.

    Article  CAS  PubMed  Google Scholar 

  11. Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27(1):176–91.

    Article  CAS  PubMed  Google Scholar 

  12. Sun R, Peng M, Xu P, Huang F, Xie Y, Li J, et al. Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation. 2020;17(1):330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86(5):580–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wu S, Chang G, Gao L, Jiang D, Wang L, Li G, et al. Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J Mol Med (Berl). 2018;96(8):791–806.

    Article  CAS  Google Scholar 

  15. Amini N, Sarkaki A, Dianat M, Mard S, Ahangarpour A, Badavi MJB, et al. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed Pharmacother. 2019;112:108568.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Wang B, Lai J, Braunstein Z, He M, Ruan G, et al. Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol. 2018;9:2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuzmicic J, Parra V, Verdejo HE, Lopez-Crisosto C, Chiong M, Garcia L, et al. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochem Pharmacol. 2014;91(3):323–36.

    Article  CAS  PubMed  Google Scholar 

  18. Kolik LG, Nadorova AV, Stolyaruk VN, Miroshkina IA, Tsorin IB, Kryzhanovskii SA. Anxiolytic properties of trimetazidine in experimental models of increased anxiety. Bull Exp Biol Med. 2017;162(5):643–6.

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woodall MC, Woodall BP, Gao E, Yuan A, Koch WJ. Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ Res. 2016;119(10):1116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toldo S, Schatz AM, Mezzaroma E, Chawla R, Stallard TW, Stallard WC, et al. Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse. Cardiovasc Drugs Ther. 2012;26(3):273–6.

    Article  CAS  PubMed  Google Scholar 

  23. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity. 2012;37(3):487–500.

    Article  CAS  PubMed  Google Scholar 

  25. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, et al. Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat Commun. 2015;6:6555.

    Article  CAS  PubMed  Google Scholar 

  27. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.

    Article  CAS  PubMed  Google Scholar 

  28. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25.

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.

    Article  CAS  PubMed  Google Scholar 

  30. Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–40.

    Article  CAS  PubMed  Google Scholar 

  31. Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2018;68(4):773–82.

    Article  CAS  PubMed  Google Scholar 

  32. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97-108e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Shao X, Jiang N, Mou S, Gu L, Li S, et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis. 2018;9(10):983.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hua S, Ma M, Fei X, Zhang Y, Gong F, Fang M. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated Kupffer cells pyroptosis. Int Immunopharmacol. 2019;68:145–55.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, et al. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res. 2019;97(6):645–60.

    Article  CAS  PubMed  Google Scholar 

  36. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  CAS  PubMed  Google Scholar 

  37. Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27(9):673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pateras I, Giaginis C, Tsigris C, Patsouris E, Theocharis S. NF-kappaB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets. 2014;18(9):1089–101.

    Article  CAS  PubMed  Google Scholar 

  39. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.

    Article  CAS  PubMed  Google Scholar 

  40. Diao C, Chen Z, Qiu T, Liu H, Yang Y, Liu X, et al. Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury. Oxid Med Cell Longev. 2019;2019:2345658.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ghoneim M, Abdallah D, Shebl A, El-Abhar HJT. The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol. 2020;409:115.

    Article  Google Scholar 

  42. Okondo M, Johnson D, Sridharan R, Go E, Chui A, Wang M, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol. 2017;13(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  43. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, et al. Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol. 2019;242:112051.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2017;21(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  45. Hauet T, Goujon J, Vandewalle A, Baumert H, Lacoste L, Tillement J, et al. Trimetazidine reduces renal dysfunction by limiting the cold ischemia/reperfusion injury in autotransplanted pig kidneys. J Am Soc Nephrol. 2000;11(1):138–48.

    Article  CAS  PubMed  Google Scholar 

  46. Amber KI, Hadi NR, Muhammad-Baqir BM, Jamil DA, Al-Aubaidy HA. Trimetazidine attenuates the acute inflammatory response induced by Novolimus eluting bioresorbable coronary scaffold implantation. Int J Cardiol. 2016;220:514–9.

    Article  PubMed  Google Scholar 

  47. Zhou X, Li C, Xu W, Chen J. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS ONE. 2012;7(7): e40424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Liu M, Zhang Y, Li XJ. Trimetazidine Attenuates Exhaustive Exercise-Induced Myocardial Injury in Rats via Regulation of the Nrf2/NF-κB Signaling Pathway. Front Pharmacol. 2019;10:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wan P, Su W, Zhang Y, Li Z, Deng C, Zhuo Y. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway. Clin Sci. 2017;131(18):2363–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 81670227 and 81600341), the Natural Science Foundation of Zhejiang Province (Grant No. LQ19H020004), the Cardiac Rehabilitation and Metabolic Therapy research fund (Grant No. 2019ZJXQN03), the Medical Health Science and Technology Project of Zhejiang Provincial (Grant No. 2021KY1072), the Wenzhou Science and Technology Bureau (Grant No. Y20170045, Y20160030 and Y20180105) and the Traditional Chinese Medicine Administration of Zhejiang Province (Grant No. 2016ZA137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhi Ye.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11_2021_1530_MOESM1_ESM.tif

Supplementary file1 (TIF 1362 KB) Supplementary Fig. S1 Schematic of the protocol and structure of TMZ. (A) Schematic of the protocol for the I/R and H/R study. After different treatments, tissue or cell samples were collected for further experimentation. (B) Schematic representation of the groups and indicators. (C) The structure of TMZ used in this study. I/R, ischemia/reperfusion; TMZ, trimetazidine; control, normoxic; H/R, hypoxia/reoxygenation; CK-MB, creatine kinase-MB; TTC, 2,3,5-triphenyltetrazolium chloride; HE, hematoxylin-eosin; IHC, immunohistochemistry; WB, Western blot analysis; ELISA, enzyme-linked immunosorbent assay; LAD, left anterior descending; CCK-8, Cell Counting Kit-8; LDH, lactate dehydrogenase; IF, immunofluorescence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lin, S., Dai, S. et al. Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury. Inflamm. Res. 71, 227–241 (2022). https://doi.org/10.1007/s00011-021-01530-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01530-6

Keywords

Navigation