Skip to main content

Advertisement

Log in

Bladder mesenchymal stromal cell-derived exosomal miRNA-217 modulates bladder cancer cell survival through Hippo-YAP pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Donor cell-derived exosomes regulate recipient cell functions. The aim of this study was to investigate the effect of human normal bladder stromal cell (hBSC) derived exosomal miR-217 on bladder cell cancer proliferation and migration.

Methods

Human BSCs were transfected with miR-217 mimic or inhibitor and hBSC-derived exosomes were isolated. Human bladder cancer cell lines (T24 and 5367) were co-cultured with hBSC-derived exosomal miR-217 mimic or inhibitor. Proliferation, migration, and apoptosis of the bladder cancer cells were assessed by Edu assay, Transwell migration assay, and Annexin V assay.

Results

Expression of miR-217 was significantly higher in the T24 and 5367 cell lines (P < 0.01). Exosomal miR-217 mimic enhanced proliferation and migration of T24 and 5367 cells, but inhibited apoptosis of the cells (P < 0.01); in contrast, exosomal miR-217 inhibitor suppressed proliferation and migration but stimulated apoptosis of the two cancer cell lines (P < 0.01). Moreover, exosomal miR-217 mimic stimulated YAP and its target proteins including Cyr61, CTGF, and ANKRD1 (P < 0.01), and in contrast, exosomal miR-217 inhibitor suppressed YAP and its target proteins (P < 0.01).

Conclusion

These findings suggested that hBSC-derived exosomal miR-217 may act as oncogene in bladder cancer cells, and that Hippo-YAP signaling pathway maybe the target for miR-217 in the bladder cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

hBSC:

Human normal bladder stromal cell

YAP:

Yes-associated proteins

TAZ:

Transcriptional activator with PDZ domain

Cyr 61:

Cysteine-rich protein 61

CTGF:

Connective tissue growth factor

ANKRD1:

Ankyrin repeat domain 1

FCS:

Fetal calf serum

DMEM:

Dulbecco’s modified Eagle’s medium

SV-HUC-1:

Normal human bladder epithelial cell line

TEM:

Transmission electron microscopy

References

  1. Ploeg M, Aben KK, Kiemeney LA. The present and future burden of urinary bladder cancer in the world. World J Urol. 2009;27:289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  4. Pang C, Guan Y, Li H, Chen W, Zhu G. Urologic cancer in China. Jpn J Clin Oncol. 2016;46:497–501.

    Article  PubMed  Google Scholar 

  5. Babjuk M, Burger M, Comperat EM, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Roupret M, Shariat SF, Sylvester R, Zigeuner R, Capoun O, Cohen D, Escrig JLD, Hernandez V, Peyronnet B, Seisen T, Soukup V. European association of urology guidelines on non-muscle-invasive bladder Cancer (TaT1 and Carcinoma In Situ) - 2019 update. Eur Urol. 2019;76:639–57.

    Article  CAS  PubMed  Google Scholar 

  6. Yin Z, Ren W. MicroRNA-217 acts as a tumor suppressor and correlates with the chemoresistance of cervical carcinoma to cisplatin. Onco Targets Ther. 2019;12:759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H, Lui WO. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.

    PubMed  Google Scholar 

  8. Zou Q, Wu H, Fu F, Yi W, Pei L, Zhou M. RKIP suppresses the proliferation and metastasis of breast cancer cell lines through up-regulation of miR-185 targeting HMGA2. Arch Biochem Biophys. 2016;610:25–32.

    Article  CAS  PubMed  Google Scholar 

  9. Guo J, Feng Z, Huang Z, Wang H, Lu W. MicroRNA-217 functions as a tumour suppressor gene and correlates with cell resistance to cisplatin in lung cancer. Mol Cells. 2014;37:664–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xiao Y, Deng T, Su C, Shang Z. MicroRNA 217 inhibits cell proliferation and enhances chemosensitivity to doxorubicin in acute myeloid leukemia by targeting KRAS. Oncol Lett. 2017;13:4986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong J, Wang M, Ni D, Zhang L, Wang W, Cui X, Fu S, Yao S. MicroRNA-217 functions as a tumor suppressor in cervical cancer cells through targeting Rho-associated protein kinase 1. Oncol Lett. 2018;16:5535–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Agbaje JO, Heijsters G, Salem AS, Van Slycke S, Schepers S, Politis C, Vrielinck L. Coronectomy of deeply impacted lower third molar: incidence of outcomes and complications after One year follow-up. J Oral Maxillofac Res. 2015;6:e1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13:17–24.

    Article  CAS  Google Scholar 

  15. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci OA. 2020;6:FSO65.

    Google Scholar 

  16. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cochetti G, Rossi de Vermandois JA, Maula V, Giulietti M, Cecati M, Del Zingaro M, Cagnani R, Suvieri C, Paladini A, Mearini E. Role of miRNAs in prostate cancer: do we really know everything? Urol Oncol. 2020;38:623–35.

    Article  CAS  PubMed  Google Scholar 

  18. Poli G, Egidi MG, Cochetti G, Brancorsini S, Mearini E. Relationship between cellular and exosomal miRNAs targeting NOD-like receptors in bladder cancer: preliminary results. Minerva Urol Nefrol. 2020;72:207–13.

    Article  PubMed  Google Scholar 

  19. Cochetti G, Poli G, Guelfi G, Boni A, Egidi MG, Mearini E. Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role. Onco Targets Ther. 2016;9:7545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 2013;14:14240–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Guelfi G, Cochetti G, Stefanetti V, Zampini D, Diverio S, Boni A, Mearini E. Next generation sequencing of urine exfoliated cells: an approach of prostate cancer microRNAs research. Sci Rep. 2018;8:7111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mearini E, Poli G, Cochetti G, Boni A, Egidi MG, Brancorsini S. Expression of urinary miRNAs targeting NLRs inflammasomes in bladder cancer. Onco Targets Ther. 2017;10:2665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thompson BJ. YAP/TAZ: drivers of tumor growth, metastasis, and resistance to therapy. BioEssays. 2020;42:e1900162.

    Article  PubMed  Google Scholar 

  24. Walko G, Woodhouse S, Pisco AO, Rognoni E, Liakath-Ali K, Lichtenberger BM, Mishra A, Telerman SB, Viswanathan P, Logtenberg M, Renz LM, Donati G, Quist SR, Watt FM. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun. 2017;8:14744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M, Shimada Y, Tsuda H, Kawano T, Inazawa J. YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis. 2011;32:389–98.

    Article  CAS  PubMed  Google Scholar 

  26. Hiemer SE, Zhang L, Kartha VK, Packer TS, Almershed M, Noonan V, Kukuruzinska M, Bais MV, Monti S, Varelas X. A YAP/TAZ-regulated molecular signature is associated with oral squamous cell carcinoma. Mol Cancer Res. 2015;13:957–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002;143:1441–50.

    Article  CAS  PubMed  Google Scholar 

  28. Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, Kuo ML. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem. 2004;279:24015–23.

    Article  CAS  PubMed  Google Scholar 

  29. Yang R, Chen Y, Chen D. Biological functions and role of CCN1/Cyr61 in embryogenesis and tumorigenesis in the female reproductive system (Review). Mol Med Rep. 2018;17:3–10.

    CAS  PubMed  Google Scholar 

  30. Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK. CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med. 2018;41:1518–28.

    CAS  PubMed  Google Scholar 

  31. Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D. Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer. 2008;99:1656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1998;95:6355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang L, Wu XH, Wang D, Luo CL, Chen LX. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep. 2013;8:1272–8.

    Article  CAS  PubMed  Google Scholar 

  34. Wang B, Shen ZL, Jiang KW, Zhao G, Wang CY, Yan YC, Yang Y, Zhang JZ, Shen C, Gao ZD, Ye YJ, Wang S. MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer. 2015;15:437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sun B, Yang M, Li M, Wang F. The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma. Biomed Pharmacother. 2015;71:58–63.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Dong X, Gu X, Qin R, Jia H, Gao J. The MicroRNA-217 functions as a potential tumor suppressor in gastric cancer by targeting GPC5. PLoS ONE. 2015;10:e0125474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen DL, Zhang DS, Lu YX, Chen LZ, Zeng ZL, He MM, Wang FH, Li YH, Zhang HZ, Pelicano H, Zhang W, Xu RH. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget. 2015;6:10868–79.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu J, Zhu LF, Cai YM, Dong HY, Zhu L, Tan JM. Isolation and multipotential differentiation of mesenchymal stromal celllike progenitor cells from human bladder. Mol Med Rep. 2019;19:187–94.

    Article  CAS  PubMed  Google Scholar 

  39. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.

    Article  PubMed  Google Scholar 

  40. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.

    Article  CAS  PubMed  Google Scholar 

  44. Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF, Lam SC. Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood. 2002;99:4457–65.

    Article  CAS  PubMed  Google Scholar 

  45. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 2001;276:10443–52.

    Article  CAS  PubMed  Google Scholar 

  46. Borkham-Kamphorst E, Steffen BT, Van de Leur E, Haas U, Tihaa L, Friedman SL, Weiskirchen R. CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cell Signal. 2016;28:34–42.

    Article  CAS  PubMed  Google Scholar 

  47. You JJ, Yang CH, Yang CM, Chen MS. Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin alphanubeta3, FAK, PI3K/Akt, and NF-kappaB pathways in retinal vascular endothelial cells. Cell Signal. 2014;26:133–40.

    Article  CAS  PubMed  Google Scholar 

  48. Matika CA, Wasilewski M, Arnott JA, Planey SL. Antiproliferative factor regulates connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells. Mol Biol Cell. 2012;23:1976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Xu T, Gao F, He H, Zhu Y, Shen Z. Targeting of CCN2 suppresses tumor progression and improves chemo-sensitivity in urothelial bladder cancer. Oncotarget. 2017;8:66316–27.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zanconato F, Cordenonsi M, Piccolo S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19:454–64.

    Article  CAS  PubMed  Google Scholar 

  51. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R, Harvey E, Zeef L, Farrow S, Streuli C, Henderson NC, Friedman SL, Hanley NA, Piper HK. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qiu D, Zhu Y, Cong Z. YAP triggers bladder cancer proliferation by affecting the MAPK pathway. Cancer Manag Res. 2020;12:12205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dong L, Lin F, Wu W, Liu Y, Huang W. Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci. 2018;15:645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ciamporcero E, Shen H, Ramakrishnan S, Yu KuS, Chintala S, Shen L, Adelaiye R, Miles KM, Ullio C, Pizzimenti S, Daga M, Azabdaftari G, Attwood K, Johnson C, Zhang J, Barrera G, Pili R. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

ZMH and ZGJ contributed to the conception and design of the study; ZMH contributed to the acquisition of data and performed the experiments; HW contributed to the analysis of data; ZMH wrote the manuscript; all authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhi-Gang Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This research was approved by the Ethics Committee of Peking Union Medical College Hospital. All methods were carried out in accordance with relevant guidelines and regulations. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZM., Wang, H. & Ji, ZG. Bladder mesenchymal stromal cell-derived exosomal miRNA-217 modulates bladder cancer cell survival through Hippo-YAP pathway. Inflamm. Res. 70, 959–969 (2021). https://doi.org/10.1007/s00011-021-01494-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01494-7

Keywords

Navigation