Skip to main content

Advertisement

Log in

Montelukast potentiates the antiinflammatory effect of NSAIDs in the rat paw formalin model and simultaneously minimizes the risk of gastric damage

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Montelukast, a cysteinyl leukotriene receptor antagonist, exhibits antiinflammatory action. We tested whether exposure to montelukast plus nonsteroidal antiinflammatory drugs (NSAIDs) elicits better control of paw inflammation in the rat formalin test and improves associated gastric damage.

Materials

A total of 46 adult male rats were used in the study.

Treatments

We evaluated separate and combined effects of montelukast (20 mg/kg), celecoxib (COX2 inhibitor, 10 mg/kg), and diclofenac (nonselective COX1/COX2 inhibitor, 10 mg/kg) on paw and gastric damage in the rat formalin test.

Results

Individual pretreatments of rats with montelukast, diclofenac, or celecoxib partly reduced formalin-induced increases in (i) paw edema, fibrosis, and inflammatory cells, (iii) serum interleukin-6 (IL-6) and leukotrienes (LTB4 and LTD4), and (iv) paw expressions of inducible nitric oxide synthase (iNOS) and COX2. These effects were accentuated in rats treated with montelukast plus diclofenac or montelukast plus celecoxib. Alternatively, montelukast or celecoxib, but not diclofenac, alleviated formalin-evoked gastric damage and increments in tumor necrosis factor-α and decrements in prostaglandin-E2. These advantageous gastric influences were potentiated in rats treated with montelukast plus celecoxib.

Conclusions

While montelukast equally enhances antiinflammatory action of diclofenac or celecoxib via downregulating iNOS/COX2/LTs/IL-6 signaling, its gastroprotective action is preferentially potentiated by celecoxib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacob JP, Manju SL, Ethiraj KR, Elias G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur J Pharm Sci. 2018;121:356–81. https://doi.org/10.1016/j.ejps.2018.06.003

    Article  CAS  Google Scholar 

  2. Rubinstein M, Dvash E. Leukotrienes and kidney diseases. Curr Opin Nephrol Hypertens. 2018;27:42–8.

    Article  CAS  PubMed  Google Scholar 

  3. Khophai S, Thanee M, Techasen A, Namwat N, Klanrit P, Titapun A, et al. Zileuton suppresses cholangiocarcinoma cell proliferation and migration through inhibition of the Akt signaling pathway. Onco Targets Ther. 2018;11:7019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl leukotrienes and their receptors: emerging therapeutic targets in central nervous system disorders. CNS Neurosci Ther. 2016;22:943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Said MM, Bosland MC. The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn-Schmiedeberg’s Arch Pharmacol. 2017;390:197–205.

    Article  CAS  Google Scholar 

  6. Di Gennaro A, Araújo AC, Busch A, Jin H, Wågsäter D, Vorkapic E, et al. Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proc Natl Acad Sci USA. 2018;115:1907–2912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Coskun AK, Yigiter M, Oral A, Odabasoglu F, Halici Z, Mentes O, et al. The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. Sci World J. 2011;11:1341–56.

    Article  CAS  Google Scholar 

  8. Muthuraman A, Sood S. Antisecretory, antioxidative and antiapoptotic effects of montelukast on pyloric ligation and water immersion stress induced peptic ulcer in rat. Prostaglandins Leukot Essent Fatty Acids. 2010;83:55–60.

    Article  CAS  PubMed  Google Scholar 

  9. Wan D, Liu X, Li G. The effects of montelukast on eosinophilic gastroenteritis in a mouse model. Immunopharmacol Immunotoxicol. 2013;35:292–5.

    Article  CAS  PubMed  Google Scholar 

  10. Ersoy Y, Cikler E, Cetinel S, Sener G, Ercan F. Leukotriene D4 receptor antagonist montelukast alleviates water avoidance stress-induced degeneration of the gastrointestinal mucosa. Prostaglandins Leukot Essent Fatty Acids. 2008;78:189–97.

    Article  CAS  PubMed  Google Scholar 

  11. El-Mas MM, Helmy MW, Ali RM, El-Gowelli HM. Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: role of endothelin signaling. Toxicol Appl Pharmacol. 2015;284:1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Helmy MW, El-Gowelli HM, Ali RM, El-Mas MM. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signaling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats. Br J Pharmacol. 2015;172:4291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helmy MW, Helmy MM, El-Mas MM. Enhanced lipoxygenase/LTD4 signaling accounts for the exaggerated hypertensive and nephrotoxic effects of cyclosporine plus indomethacin in rats. Biomed Pharmacother. 2018;102:309–16.

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Zhang L, Lou H, Wang Y, Cao F, Wang C. A randomized trial of comparing a combination of montelukast and budesonide with budesonide in allergic rhinitis. Laryngoscope. 2021;131(4):E1054–61. https://doi.org/10.1002/lary.28433.

    Article  CAS  PubMed  Google Scholar 

  15. Seresirikachorn K, Chitsuthipakorn W, Kanjanawasee D, Khattiyawittayakun L, Snidvongs K. Leukotriene receptor antagonist addition to H1-antihistamine is effective for treating allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2019;33:591–600.

    Article  PubMed  Google Scholar 

  16. Ertugay CK, Cingi C, Yaz A, San T, Ulusoy S, Erdogmus N, et al. Effect of combination of montelukast and levocetirizine on otitis media with effusion: a prospective, placebo-controlled trial. Acta Otolaryngol. 2013;133:1266–72.

    Article  CAS  PubMed  Google Scholar 

  17. Hemmati AA, Ghorbanzadeh B, Behmanesh MA. Potentiation of indomethacin-induced anti-inflammatory response by montelukast in formalin-induced inflammation in rats. Acta Med Iran. 2013;51:675–80.

    PubMed  Google Scholar 

  18. National Research Council. Guide for the care and use of laboratory animals. Washington, DC, USA: The National Academic Press; 2011.

    Google Scholar 

  19. Fahmy SR, Gaafar K. Establishing the first institutional animal care and use committee in Egypt. Philos Ethics Humanit Med. 2016;11:2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miranda-Lara CA, Ortiz MI, Rodríguez-Ramos F, Chávez-Piña AE. Synergistic interaction between docosahexaenoic acid and diclofenac on inflammation, nociception, and gastric security models in rats. Drug Dev Res. 2018;79:239–46.

    Article  CAS  PubMed  Google Scholar 

  21. Safaeian L, Hajhashemi V, Ajoodanian M. The effect of celecoxib on blood pressure and plasma oxidant/antioxidant status in co-administration with glucocorticoid in rat. Biomed Pharmacother. 2018;108:1804–8.

    Article  CAS  PubMed  Google Scholar 

  22. Abdelzaher WY, Bahaa HA, Toni NDM, Sanad AS. Mechanisms underlying the protective effect of montelukast in prevention of endometrial hyperplasia in female rats. Int Immunopharmacol. 2018;62:326–33.

    Article  CAS  PubMed  Google Scholar 

  23. Arzi A, Olapour S, Yaghooti H, Sistani KN. Effect of royal jelly on formalin induced-inflammation in rat hind paw. Jundishapur J Nat Pharm Prod. 2015;10:e22466.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Helmy MM, Hashim AA, Mouneir SM. Zileuton alleviates acute cisplatin nephrotoxicity: inhibition of lipoxygenase pathway favorably modulates the renal oxidative/inflammatory/caspase-3 axis. Prostaglandins Other Lipid Mediat. 2018;135:1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013;52:481–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. El-Mas MM, Fan M, Abdel-Rahman AA. Endotoxemia-mediated facilitation of cardiac iNOS expression accounts for the hypotensive effect of ethanol in female rats. J Pharmacol Exp Ther. 2008;324:368–75.

    Article  CAS  PubMed  Google Scholar 

  27. El-Mas MM, Abdel-Rahman AA. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats. Am J Physiol Endocrinol Metab. 2014;306:E740–7.

    Article  CAS  PubMed  Google Scholar 

  28. El-Mas MM, El-gowilly SM, Gohar EY, Ghazal AM. Pharmacological characterization of cellular mechanisms of the renal vasodilatory effect of nicotine in rats. Eur J Pharmacol. 2008;588:294–300.

    Article  CAS  PubMed  Google Scholar 

  29. El-gowilly SM, Ghazal AM, Gohar EY, El-Mas MM. Exacerbation by nicotine of the cyclosporine A-induced impairment of β-adrenoceptor-mediated renal vasodilation in rats. Clin Exp Pharmacol Physiol. 2008;35:1164–71.

    Article  CAS  PubMed  Google Scholar 

  30. Sakat SS, Mani K, Demidchenko YO, Gorbunov EA, Tarasov SA, Mathur A, et al. Release-active dilutions of diclofenac enhance anti-inflammatory effect of diclofenac in carrageenan-induced rat paw edema model. Inflammation. 2014;37:1–9.

    Article  CAS  PubMed  Google Scholar 

  31. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Enhanced anti-inflammatory effects of celecoxib from a transdermally applied nanoemulsion. Pharmazie. 2009;64:258–9.

    CAS  PubMed  Google Scholar 

  32. Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater Today Commun. 2018;17:200–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437.

    Article  CAS  PubMed  Google Scholar 

  34. Kim KH, Im HW, Karmacharya MB, Kim S, Min BH, Park SR, et al. Low-intensity ultrasound attenuates paw edema formation and decreases vascular permeability induced by carrageenan injection in rats. J Inflamm (Lond). 2020;17:7.

    Article  CAS  Google Scholar 

  35. Sautebin L, Ialenti A, Ianaro A, Di Rosa M. Modulation by nitric oxide of prostaglandin biosynthesis in the rat. British J Pharmacol. 1995;114:323–8.

    Article  CAS  Google Scholar 

  36. Liang JL, Wu JZ, Liu YH, Zhang ZB, Wu QD, Chen HB, et al. Patchoulene epoxide isolated from patchouli oil suppresses acute inflammation through inhibition of NF-κB and downregulation of COX-2/iNOS. Mediators Inflamm. 2017;2017:1089028.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wan M, Tang X, Stsiapanava A, Haeggström JZ. Biosynthesis of leukotriene B(4). Semin Immunol. 2017;33:3–15.

    Article  CAS  PubMed  Google Scholar 

  38. Andersson P, Serhan CN, Petasis NA, Palmblad J. Interactions between lipoxin A4, the stable analogue 16-phenoxy-lipoxin A4 and leukotriene B4 in cytokine generation by human monocytes. Scand J Immunol. 2004;60:249–56.

    Article  CAS  PubMed  Google Scholar 

  39. Zhong M, Cheng G, Wang W, Zhou L, Zhu X, Zhang J. Effects of leukotrienes on production of interleukin 6 from mouse peritoneal macrophages. Yao Xue Xue Bao. 1998;33:326–9.

    CAS  PubMed  Google Scholar 

  40. Agha AM, Mansour M. Effects of captopril on interleukin-6, leukotriene B(4), and oxidative stress markers in serum and inflammatory exudate of arthritic rats: evidence of antiinflammatory activity. Toxicol Appl Pharmacol. 2000;168:123–30.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng Y, Li X, Tse HF, Rong J. Gallic acid-l-leucine conjugate protects mice against LPS-induced inflammation and sepsis via correcting proinflammatory lipid mediator profiles and oxidative stress. Oxid Med Cell Longev. 2018;2018:1081287.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Tang H, Liu X, Chen H, Feng N, Zhang J, et al. Frontline science: reprogramming COX-2, 5-LOX, and CYP4A-mediated arachidonic acid metabolism in macrophages by salidroside alleviates gouty arthritis. J Leukoc Biol. 2019;105:11–24.

    Article  CAS  PubMed  Google Scholar 

  43. Abbas SS, Schaalan MF, Bahgat AK, El-Denshary ES. Possible potentiation by certain antioxidants of the anti-inflammatory effects of diclofenac in rats. Sci World J. 2014;2014:731462.

    Article  Google Scholar 

  44. Curcelli EC, Muller SS, Novelli Filho JL. Beneficial effects of diclofenac therapy on serum lipids, oxidized low-density lipoprotein and antioxidant defenses in rats. Life Sci. 2008;82:892–8.

    Article  CAS  PubMed  Google Scholar 

  45. El-Ghazaly MA, Nada AS, El-Hazek RM, Khayyal MT. Effect of selective COX-2 inhibitor, celecoxib on adjuvant-induced arthritis model in irradiated rats. Int J Radiat Biol. 2010;86:1079–87.

    Article  CAS  PubMed  Google Scholar 

  46. Maier TJ, Tausch L, Hoernig M, Coste O, Schmidt R, Angioni C, et al. Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol. 2008;76:862–72.

    Article  CAS  PubMed  Google Scholar 

  47. Thiel C, Smit I, Baier V, Cordes H, Fabry B, Blank LM, et al. Using quantitative systems pharmacology to evaluate the drug efficacy of COX-2 and 5-LOX inhibitors in therapeutic situations. NPJ Syst Biol Appl. 2018;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boff D, Oliveira VLS, Queiroz Junior CM, Galvão I, Batista NV, Gouwy M, et al. Lipoxin A 4 impairs effective bacterial control and potentiates joint inflammation and damage caused by Staphylococcus aureus infection. FASEB J. 2020;34:11498–510.

    Article  CAS  PubMed  Google Scholar 

  49. Czapski GA, Czubowicz K, Strosznajder RP. Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol Rep. 2012;64:1179–88.

    Article  CAS  PubMed  Google Scholar 

  50. Mishra AP, Bajpai A, Chandra S. A comprehensive review on the screening models for the pharmacological assessment of antiulcer drugs. Curr Clin Pharmacol. 2019;14:175–96.

    Article  PubMed  Google Scholar 

  51. Ozbakış-Dengiz G, Cadırcı E, Yurdakan G. Histopathologic evaluation of anti-ulcerogenic effect of montelukast in indomethacin-induced experimental ulcer model. Turk J Gastroenterol. 2013;24:88–92.

    Article  PubMed  Google Scholar 

  52. Dengiz GO, Odabasoglu F, Halici Z, Cadirci E, Suleyman H. Gastroprotective and antioxidant effects of montelukast on indomethacin-induced gastric ulcer in rats. J Pharmacol Sci. 2007;105:94–102.

    Article  CAS  PubMed  Google Scholar 

  53. Takeuchi K. Gastric cytoprotection by prostaglandin E2 and prostacyclin: relationship to EP1 and IP receptors. J Physiol Pharmacol. 2014;64:3–14.

    Google Scholar 

  54. Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules. 2020;10:291.

    Article  CAS  PubMed Central  Google Scholar 

  55. Suhett LG, Hermsdorff HHM, Cota BC, Ribeiro SAV, Shivappa N, Hébert JR, et al. Dietary inflammatory potential, cardiometabolic risk and inflammation in children and adolescents: a systematic review. Crit Rev Food Sci Nutr. 2021;61(3):407–16. https://doi.org/10.1080/10408398.2020.1734911.

    Article  CAS  PubMed  Google Scholar 

  56. Takeuchi K. Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermotility. World J Gastroenterol. 2012;18:2147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaworek J, Bonior J, Tomaszewska R, Jachimczak B, Kot M, Bielański W, et al. Involvement of cyclooxygenase-derived prostaglandin E2 and nitric oxide in the protection of rat pancreas afforded by low dose of lipopolysaccharide. J Physiol Pharmacol. 2001;52:107–26.

    CAS  PubMed  Google Scholar 

  58. Hatazawa R, Tanaka A, Tanigami M, Amagase K, Kato S, Ashida Y, et al. Cyclooxygenase-2/prostaglandin E2 accelerates the healing of gastric ulcers via EP4 receptors. Am J Physiol Gastrointest Liver Physiol. 2007;293:G788–97.

    Article  CAS  PubMed  Google Scholar 

  59. Davies NM, Sharkey KA, Asfaha S, Macnaughton WK, Wallace JL. Aspirin causes rapid up-regulation of cyclo-oxygenase-2 expression in the stomach of rats. Aliment Pharmacol Ther. 1997;11:1101–8.

    Article  CAS  PubMed  Google Scholar 

  60. Jaworek J, Jachimczak B, Tomaszewska R, Konturek PC, Pawlik WW, Sendur R, et al. Protective action of lipopolysaccharidesin rat caerulein-induced pancreatitis: role of nitric oxide. Digestion. 2000;62:1–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Marwa M. Essawy, Oral Pathology Department, Faculty of Dentistry, Alexandria University, Egypt, for helping with the morphometric studies. We also thank the following 2019 Senior Pharmacy Students, Pharos University in Alexandria, Alexandria, Egypt, for their help during the experiments: Mohamed Y. Mohamed, Noran M. Tarek, Omnia E. Ibrahim, Mohamed S. Gouda, Mahmoud K. Elhalougy, Mohamed A. Mohamed, Mohamed M. Gamil, Mamoud K. Eldeeb, Basem Abdelmaseeh, Eman M. Abdelaziz.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. El-Mas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were conducted in compliance with institutional guidelines on the care and use of laboratory animals and with the guidelines of the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978) [18] and the Egyptian guide for the care and use of laboratory animals [19]. All efforts were made to limit the suffering of rats during the experimental period. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible Editor: Bernhard Gibbs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhady, S.A., Ali, M.A., Al-Shafie, T.A. et al. Montelukast potentiates the antiinflammatory effect of NSAIDs in the rat paw formalin model and simultaneously minimizes the risk of gastric damage. Inflamm. Res. 70, 981–992 (2021). https://doi.org/10.1007/s00011-021-01492-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01492-9

Keywords

Navigation