Skip to main content

Advertisement

Log in

Chondro-protective effects of celastrol on osteoarthritis through autophagy activation and NF-κB signaling pathway inhibition

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Osteoarthritis (OA) is a degenerative articular cartilage disease accompanied by superfluous apoptosis of chondrocytes in the elderly. Celastrol is a potent bioactive medicine which can exert anti-inflammatory and anti-oxidative effects in various diseases. This study aimed to elucidate the possible role of celastrol in OA as well as the specific mechanism of celastrol in vitro and in vivo.

Methods

Autophagy-related biomarkers and apoptotic molecules were evaluated by PCR, Western blot and immunofluorescence staining. The level of autophagy was assessed by MDC staining and transmission electron microscopy. To study the downstream signaling pathway, nuclear factor kappa B (NF-κB) signaling pathway-related proteins were examined by Western blot. Moreover, an anterior cruciate ligament transection (ACLT) rat model was established to observe the protective effect of celastrol on rat cartilage.

Results

We found celastrol ameliorated IL-1β-induced chondrocyte apoptosis and increased the expression of LC3-II and Beclin-1. In addition, the suppression of celastrol-induced autophagy by 3-methyladenine (3MA) prevented the protective effect of celastrol in chondrocytes. Moreover, celastrol decreased the IL-1β-stimulated phosphorylation degree of IκBα and P65. We also found PDTC (a known NF-κB pathway inhibitor) can promote the activation of autophagy and attenuate the apoptosis of chondrocytes. Meanwhile, the results of rat ACLT model revealed the same effect as in vitro experiments.

Conclusions

In summary, celastrol protected against chondrocyte apoptosis by promoting autophagy and inhibiting NF-κB signaling pathway in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.

    PubMed  PubMed Central  Google Scholar 

  2. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.

    PubMed  Google Scholar 

  3. Ong BN, Richardson JC, Porter T, Grime J. Exploring the relationship between multi-morbidity, resilience and social connectedness across the lifecourse. Health (London). 2014;18:302–18.

    Google Scholar 

  4. Pincus T, Gibson KA, Block JA. Premature mortality: a neglected outcome in rheumatic diseases? Arthritis Care Res (Hoboken). 2015;67:1043–6.

    Google Scholar 

  5. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryotic Cell. 2002;1:11–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marycz K, Weiss C, Smieszek A, Kornicka K. Evaluation of oxidative stress and mitophagy during adipogenic differentiation of adipose-derived stem cells isolated from equine metabolic Syndrome (EMS) horses. Stem Cells Int. 2018;2018:5340756.

    PubMed  PubMed Central  Google Scholar 

  7. Marycz K, Kornicka K, Maredziak M, Golonka P, Nicpon J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J Cell Mol Med. 2016;20:2384–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Marycz K, Kornicka K, Grzesiak J, Smieszek A, Szlapka J. Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: new findings in the field of progenitor cells differentiation. Oxid Med Cell Longev. 2016;2016:3718468.

    PubMed  PubMed Central  Google Scholar 

  9. Kornicka K, Houston J, Marycz K. Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and Type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev Rep. 2018;14:337–45.

    PubMed  Google Scholar 

  10. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    CAS  PubMed  Google Scholar 

  12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beatriz Caramés MO, Kiosses WB, Lotz M. The relationship of autophagy defects and cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 2015;67:1568–76.

    PubMed  PubMed Central  Google Scholar 

  14. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis. 2012;71:575–81.

    CAS  PubMed  Google Scholar 

  15. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62:791–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carames B, Taniguchi N, Seino D, Blanco FJ, D'Lima D, Lotz M. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum. 2012;64:1182–92.

    CAS  PubMed  Google Scholar 

  17. Koji Takayama YK, Kobayashi M, Greco N, Cummins JH, Matsushita T, Kuroda R, Kurosaka M, Fu FH, Huard J. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis. Arthritis Res Therapy. 2014;16:482.

    Google Scholar 

  18. Ansari MY, Ahmad N, Haqqi TM (2018) Butein activates autophagy through AMPK/TSC2/ULK1/mTOR pathway to inhibit IL-6 expression in IL-1beta stimulated human chondrocytes. Cell Physiol Biochem 49:I

    CAS  PubMed  Google Scholar 

  19. Hu J, Cui W, Ding W, Gu Y, Wang Z, Fan W. Globular adiponectin attenuated H%3csub%3e2%3c/sub%3eO%3csub%3e2%3c/sub%3e-induced apoptosis in rat chondrocytes by inducing autophagy through the AMPK/ mTOR pathway. Cell Physiol Biochem. 2017;43:367–82.

    CAS  PubMed  Google Scholar 

  20. Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 2004;70:93–103.

    CAS  PubMed  Google Scholar 

  21. Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the chinese “Thunder of God Vine”, is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006;66:4758–65.

    CAS  PubMed  Google Scholar 

  22. Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Molecular Cell. 2017;66(141–153):e6.

    Google Scholar 

  23. Lee J-H, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, et al. Inhibition of NF-κB activation through targeting IκB kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol. 2006;72:1311–21.

    CAS  PubMed  Google Scholar 

  24. Kannaiyan R, Shanmugam MK, Sethi G. Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer. Cancer Lett. 2011;303:9–20.

    CAS  PubMed  Google Scholar 

  25. Setty AR, Sigal LH. Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum. 2005;34:773–84.

    PubMed  Google Scholar 

  26. Klaic L, Morimoto RI, Silverman RB. Celastrol analogues as inducers of the heat shock response Design and synthesis of affinity probes for the identification of protein targets. ACS Chem Biol. 2012;7:928–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D. Characterization of Celastrol to inhibit Hsp90 and Cdc37 interaction. J Biol Chem. 2009;284:35381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Venkatesha SH, Astry B, Nanjundaiah SM, Yu H, Moudgil KD. Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorg Med Chem. 2012;20:5229–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu X, Tao W, Jiang F, Li C, Lin J, Liu C. Celastrol attenuates hypertension-induced inflammation and oxidative stress in vascular smooth muscle cells via induction of heme oxygenase-1. Am J Hypertens. 2010;23:895–903.

    CAS  PubMed  Google Scholar 

  30. Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem. 2005;94:995–1004.

    CAS  PubMed  Google Scholar 

  31. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci. 2009;10:109.

    PubMed  PubMed Central  Google Scholar 

  32. Deng Y-N, Shi J, Liu J, Qu Q-M. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int. 2013;63:1–9.

    CAS  PubMed  Google Scholar 

  33. Divya T, Sureshkumar A, Sudhandiran G. Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: Role of adaptor protein p62/ SQSTM1. Pulm Pharmacol Ther. 2017;45:47–61.

    CAS  PubMed  Google Scholar 

  34. Zhao J, Sun Y, Shi P, Dong JN, Zuo LG, Wang HG, et al. Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy. Int Immunopharmacol. 2015;26:221–8.

    CAS  PubMed  Google Scholar 

  35. Ding QH, Cheng Y, Chen WP, Zhong HM, Wang XH. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. Eur J Pharmacol. 2013;708:1–7.

    CAS  PubMed  Google Scholar 

  36. Nanjundaiah SM, Venkatesha SH, Yu H, Tong L, Stains JP, Moudgil KD. Celastrus and its bioactive celastrol protect against bone damage in autoimmune arthritis by modulating osteoimmune cross-talk. J Biol Chem. 2012;287:22216–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Ha C, Lin T, Wang D, Wang Y, Gong M. Celastrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. J Pharm Pharmacol. 2018;70:81–8.

    CAS  PubMed  Google Scholar 

  38. Gerwin N, Bendele AM, Glasson S, Carlson CS. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat. Osteoarthr Cartil. 2010;18(Suppl 3):S24–34.

    PubMed  Google Scholar 

  39. Choi MC, MaruYama T, Chun CH, Park Y. Alleviation of murine osteoarthritis by cartilage-specific deletion of IkappaBzeta. Arthritis Rheumatol. 2018;70:1440–9.

    CAS  PubMed  Google Scholar 

  40. Kobayashi H, Chang SH, Mori D, Itoh S, Hirata M, Hosaka Y, et al. Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes. Nat Commun. 2016;7:13336.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil. 2005;13:632–41.

    CAS  PubMed  Google Scholar 

  42. Carmine Settembre EAS, Ballabio A, Karsenty G. Self-eating in skeletal development: Implications for lysosomal storage disorders. Autophagy. 2009;5:228–9.

    PubMed  PubMed Central  Google Scholar 

  43. Chen Z, Jin T, Lu Y. AntimiR-30b inhibits TNF-alpha mediated apoptosis and attenuated cartilage degradation through enhancing autophagy. Cell Physiol Biochem. 2016;40:883–94.

    CAS  PubMed  Google Scholar 

  44. Shen C, Cai GQ, Peng JP, Chen XD. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthr Cartil. 2015;23:2279–87.

    CAS  PubMed  Google Scholar 

  45. Appleton CT. Osteoarthritis year in review 2017: biology. Osteoarthr Cartil. 2018;26:296–303.

    CAS  PubMed  Google Scholar 

  46. Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 2016;61:411–25.

    CAS  PubMed  Google Scholar 

  47. Johannes Stöve KH, Günther K-P, Scharf H-P. Interleukin-1ß induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology. 2000;68:144–9.

    Google Scholar 

  48. Xue H, Tu Y, Ma T, Liu X, Wen T, Cai M, et al. Lactoferrin inhibits IL-1beta-induced chondrocyte apoptosis through AKT1-induced CREB1 activation. Cell Physiol Biochem. 2015;36:2456–65.

    CAS  PubMed  Google Scholar 

  49. Lotz MK, Carames B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol. 2011;7:579–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin M, Klionsky DJ. Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett. 2014;588:2457–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cascão R, Vidal B, Jalmari Finnilä MA, Lopes IP, Teixeira RL, Saarakkala S, et al. Effect of celastrol on bone structure and mechanics in arthritic rats. RMD Open. 2017;3:e000438.

    PubMed  PubMed Central  Google Scholar 

  52. Olivotto E, Otero M, Marcu KB, Goldring MB. Pathophysiology of osteoarthritis: canonical NF-kappaB/IKKbeta-dependent and kinase-independent effects of IKKalpha in cartilage degradation and chondrocyte differentiation. RMD Open. 2015;1:e000061.

    PubMed  PubMed Central  Google Scholar 

  53. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-κB Signaling: Multiple angles to target OA. Curr Drug Targets. 2010;11:599–613.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical-Engineering Joint Fund of Shanghai Jiaotong University (YG2017QN02)

Author information

Authors and Affiliations

Authors

Contributions

Kai Feng and Chen Xu conceived, organized, and supervised the study, Kai Feng and Hongfang Chen performed the experiments and contributed to the analysis of data, Kai Feng and Hongfang Chen prepared and wrote the manuscript.

Corresponding authors

Correspondence to Kai Feng or Chen Xu.

Ethics declarations

Conflict of interests

The author has no conflicts of interest to declare.

Additional information

Responsible Editor: Jason J. McDougall.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Chen, H. & Xu, C. Chondro-protective effects of celastrol on osteoarthritis through autophagy activation and NF-κB signaling pathway inhibition. Inflamm. Res. 69, 385–400 (2020). https://doi.org/10.1007/s00011-020-01327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01327-z

Keywords

Navigation