Skip to main content

Advertisement

Log in

Antiinflammatory peptides: current knowledge and promising prospects

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties.

Methods

In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects.

Results

In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years.

Conclusion

This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6):1505S-19S.

    Article  Google Scholar 

  2. Abad MJ, Bedoya LM, Bermejo P. Natural marine anti-inflammatory products. Mini Rev Med Chem. 2008;8(8):740–54.

    Article  CAS  PubMed  Google Scholar 

  3. Harizi H, Corcuff J-B, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med. 2008;14(10):461–9.

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009;49:123–50.

    Article  CAS  PubMed  Google Scholar 

  5. Wang YF, Xu X, Fan X, Zhang C, Wei Q, Wang X, et al. A cell-penetrating peptide suppresses inflammation by inhibiting NF-κB signaling. Mol Ther. 2011;19(10):1849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68(13):2161.

    Article  CAS  PubMed  Google Scholar 

  7. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol. 2006;176(4):2455–64.

    Article  CAS  PubMed  Google Scholar 

  8. Håversen L, Ohlsson BG, Hahn-Zoric M, Hanson L, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunol. 2002;220(2):83–95.

    Article  CAS  PubMed  Google Scholar 

  9. Moronta J, Smaldini PL, Docena GH, Añón MC. Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods. 2016;21:463–73.

    Article  CAS  Google Scholar 

  10. Björn C. Antimicrobial peptides in the treatment of infectious and inflammatory conditions-Preclinical studies of mechanism of action, efficacy, and safety. 2016. University of Gothenburg. Sahlgrenska Academy. http://hdl.handle.net/2077/44863.

  11. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Des Discov. 2015;20(1):122–8.

    CAS  Google Scholar 

  14. Sun G-Y, Yang H-H, Guan X-X, Zhong W-J, Liu Y-P, Du M-Y, et al. Vasoactive intestinal peptide overexpression mediated by lentivirus attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation. Mol Immunol. 2018;97:8–15.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta S, Sharma AK, Shastri V, Madhu MK, Sharma VK. Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med. 2017;15(1):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014.

  17. Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J Food Biochem. 2018:e12531.

  18. Sharma U, Rhaleb N-E, Pokharel S, Harding P, Rasoul S, Peng H, et al. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol. 2008;294(3):H1226-H32.

    Article  CAS  Google Scholar 

  19. Kurt-Jones EA, Cao L, Sandor F, Rogers AB, Whary MT, Nambiar PR, et al. Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect Immun. 2007;75(1):471–80.

    Article  CAS  PubMed  Google Scholar 

  20. Collins PE, Grassia G, Colleran A, Kiely PA, Ialenti A, Maffia P, et al. Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. J Biol Chem. 2015;290(25):15687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laurent CDS, Laurent KES, Mathison RD, Befus AD. Inflammation, Immunity, and Organ System Physiology: Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif. Am J Physiol Regul Integr Comp Physiol. 2015;308(7):R569.

    Article  CAS  Google Scholar 

  22. Cunningham TJ. Use of CHEC peptides to treat neurological and cardiovascular diseases and disorders. Google Patents; 2016.

  23. Kalle M, Papareddy P, Kasetty G, van der Plas MJ, Mörgelin M, Malmsten M, et al. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection. PLoS One. 2014;9(7):e102577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu L, Wang YN, Li MC, Wang HB, Pu LJ, Niu WQ, et al. Reduced serum levels of vasostatin-2, an anti-inflammatory peptide derived from chromogranin A, are associated with the presence and severity of coronary artery disease. Eur Heart J. 2012;33(18):2297–306.

    Article  CAS  PubMed  Google Scholar 

  25. Mitić K, Stanojević S, Kuštrimović N, Vujić V, Dimitrijević M. Neuropeptide Y modulates functions of inflammatory cells in the rat: distinct role for Y1, Y2 and Y5 receptors. Peptides. 2011;32(8):1626–33.

    Article  CAS  PubMed  Google Scholar 

  26. Shapira E, Brodsky B, Proscura E, Nyska A, Erlanger-Rosengarten A, Wormser U. Amelioration of experimental autoimmune encephalitis by novel peptides: involvement of T regulatory cells. J Autoimmun. 2010;35(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Z, Jiang H, Huang Y, Wang J, Qiu L, Hu Z, et al. Corrigendum: Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep. 2016;6:31259.

  28. Baron A, Diochot S, Salinas M, Alloui A, Douguet D, Mourier G, et al. Mambalgins, snake peptides against inflammatory and neuropathic pain through inhibition of ASIC channels. Toxicon. 2018;149:93.

    Article  Google Scholar 

  29. Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F. Fasciculin, a powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochem Int. 1983;5(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  30. Harvey A, Robertson B. Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem. 2004;11(23):3065–72.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Q, Huang J, Wang S-z, Qin Z-h, Lin F. Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model. J Ethnopharmacol. 2016;194:1087–95.

    Article  CAS  PubMed  Google Scholar 

  32. Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, et al. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1. 3 channel blocker HsTX1 [R14A] and its PEGylated analog. Clin Immunol. 2017;180:45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoang AN, Vo HD, Vo NP, Kudryashova KS, Nekrasova OV, Feofanov AV, et al. Vietnamese Heterometrus laoticus scorpion venom: evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1. 3 potassium channel. Toxicon. 2014;77:40–8.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon. 2017;127:37–43.

    Article  CAS  PubMed  Google Scholar 

  35. Yin S-M, Zhao D, Yu D-Q, Li S-L, An D, Peng Y, et al. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease. Sheng Li Xue Bao. 2014;66:658–66.

    CAS  PubMed  Google Scholar 

  36. Wei L, Huang C, Yang H, Li M, Yang J, Qiao X, et al. A potent anti-inflammatory peptide from the salivary glands of horsefly. Parasit Vectors. 2015;8(1):556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee G, Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules. 2016;21(5):616.

    Article  CAS  PubMed Central  Google Scholar 

  38. Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, Guo W, et al. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol. 2005;70(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  39. Wei L, Yang J, He X, Mo G, Hong J, Yan X, et al. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J Med Chem. 2013;56(9):3546–56.

    Article  CAS  PubMed  Google Scholar 

  40. Wei L, Dong L, Zhao T, You D, Liu R, Liu H, et al. Analgesic and anti-inflammatory effects of the amphibian neurotoxin, anntoxin. Biochimie. 2011;93(6):995–1000.

    Article  CAS  PubMed  Google Scholar 

  41. Qian G-m, Pan G-F, Guo J-Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res. 2012;26(24):2358–62.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang J-W, Lee S-J, Kim Y-S, Kim E-K, Ahn C-B, Jeon Y-J, et al. Purification and characterization of a novel peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish Shellfish Immunol. 2012;33(4):993–9.

    Article  CAS  PubMed  Google Scholar 

  43. Oishi M, Kiyono T, Sato K, Tokuhara K, Tanaka Y, Miki H, et al. pyroGlu-Leu inhibits the induction of inducible nitric oxide synthase in interleukin-1β-stimulated primary cultured rat hepatocytes. Nitric Oxide. 2015;44:81–7.

    Article  CAS  PubMed  Google Scholar 

  44. del Carmen Millán-Linares M, Millán F, Pedroche J, del Mar Yust M. GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. Journal of Functional Foods. 2015;18:358–67.

    Article  CAS  Google Scholar 

  45. Cash JL, Bena S, Headland SE, McArthur S, Brancaleone V, Perretti M. Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23. EMBO reports. 2013;14(11):999–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peshavariya HM, Taylor CJ, Goh C, Liu G-S, Jiang F, Chan EC, et al. Annexin peptide Ac2-26 suppresses TNFα-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS One. 2013;8(4):e60790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pena OM, Afacan N, Pistolic J, Chen C, Madera L, Falsafi R, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS One. 2013;8(1):e52449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee E, Kim JK, Shin S, Jeong KW, Lee J, Lee DG, et al. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J Pept Sci. 2011;17(10):675–82.

    Article  CAS  PubMed  Google Scholar 

  49. Ruchala P, Navab M, Jung C-L, Hama-Levy S, Micewicz ED, Luong H, et al. Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS One. 2010;5(4):e10181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathison R, Lo P, Moore G, Scott B, Davison JS. Attenuation of intestinal and cardiovascular anaphylaxis by the salivary gland tripeptide FEG and its D-isomeric analog feG. Peptides. 1998;19(6):1037–42.

    Article  CAS  PubMed  Google Scholar 

  51. Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005;11(8):713–9.

    Article  PubMed  Google Scholar 

  52. Wang J, Liu Y-M, Cao W, Yao K-W, Liu Z-Q, Guo J-Y. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis. 2012;27(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  53. Noh HJ, Hwang D, Lee ES, Hyun JW, Yi PH, Kim GS, et al. Anti-inflammatory activity of a new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu. J Ethnopharmacol. 2015;163:106–12.

    Article  CAS  PubMed  Google Scholar 

  54. Wu P, Wu M, Xu L, Xie H, Wei X. Anti-inflammatory cyclopeptides from exocarps of sugar-apples. Food Chem. 2014;152:23–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hernández-Ledesma B, Hsieh C-C, Ben O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009;390(3):803–8.

    Article  CAS  PubMed  Google Scholar 

  56. de Mejia EG, Dia VP. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides. 2009;30(12):2388–98.

    Article  CAS  PubMed  Google Scholar 

  57. Yang X, Zhu J, Tung C-Y, Gardiner G, Wang Q, Chang H-C, et al. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs. PLoS One. 2015;10(2):e0115330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin Q, Liao W, Bai J, Wu W, Wu J. Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. J Funct Foods. 2017;34:248–53.

    Article  CAS  Google Scholar 

  59. Cam A, de Mejia EG. Role of dietary proteins and peptides in cardiovascular disease. Mol Nutr Food Res. 2012;56(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  60. Marcone S, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. Br J Clin Pharmacol. 2017;83(1):152–62.

    Article  CAS  PubMed  Google Scholar 

  61. Bamdad F, Shin SH, Suh J-W, Nimalaratne C, Sunwoo H. Anti-Inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules. 2017;22(4):609.

    Article  CAS  PubMed Central  Google Scholar 

  62. Altmann K, Wutkowski A, Klempt M, Clawin-Rädecker I, Meisel H, Lorenzen PC. Generation and identification of anti-inflammatory peptides from bovine β-casein using enzyme preparations from cod and hog. J Sci Food Agric. 2016;96(3):868–77.

    Article  CAS  PubMed  Google Scholar 

  63. Mukhopadhya A, Noronha N, Bahar B, Ryan MT, Murray BA, Kelly PM, et al. Anti-inflammatory effects of a casein hydrolysate and its peptide-enriched fractions on TNFα-challenged Caco-2 cells and LPS-challenged porcine colonic explants. Food Sci Nutr. 2014;2(6):712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nielsen DSG, Theil PK, Larsen LB, Purup S. Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models. J Anim Sci. 2012;90(suppl_4):403–5.

    Article  PubMed  Google Scholar 

  65. Hirota T, Nonaka A, Matsushita A, Uchida N, Ohki K, Asakura M, et al. Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessels. 2011;26(5):549–56.

    Article  PubMed  Google Scholar 

  66. Aihara K, Ishii H, Yoshida M. Casein-derived tripeptide, Val-Pro-Pro (VPP), modulates monocyte adhesion to vascular endothelium. J Atheroscler Thromb. 2009;16(5):594–603.

    Article  CAS  PubMed  Google Scholar 

  67. Huang W, Chakrabarti S, Majumder K, Jiang Y, Davidge ST, Wu J. Egg-derived peptide IRW inhibits TNF-α-induced inflammatory response and oxidative stress in endothelial cells. J Agric Food Chem. 2010;58(20):10840–6.

    Article  CAS  PubMed  Google Scholar 

  68. Majumder K, Chakrabarti S, Davidge ST, Wu J. Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory response and oxidative stress. J Agric Food Chem. 2013;61(9):2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang W-Y, Majumder K, Wu J. Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals. Food Chem. 2010;123(3):635–41.

    Article  CAS  Google Scholar 

  70. Huang W, Shen S, Nimalaratne C, Li S, Majumder K, Wu J. Effects of addition of egg ovotransferrin-derived peptides on the oxygen radical absorbance capacity of different teas. Food Chem. 2012;135(3):1600–7.

    Article  CAS  PubMed  Google Scholar 

  71. Bjørndal B, Berge C, Ramsvik MS, Svardal A, Bohov P, Skorve J, et al. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation. Lipids Health Dis. 2013;12(1):143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao L, Wang X, Zhang X-L, Xie Q-F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J Food Drug Anal. 2016;24(2):376–84.

    Article  CAS  PubMed  Google Scholar 

  73. Suh J-S, Eun J-S, So J-N, SEO J-T. JHON G-J. Phagocytic activity of ethyl alcohol fraction of deer antler in murine peritoneal macrophage. Biol Pharm Bull. 1999;22(9):932–5.

    Article  CAS  PubMed  Google Scholar 

  74. Zha E, Li X, Li D, Guo X, Gao S, Yue X. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int Immunopharmacol. 2013;16(2):210–3.

    Article  CAS  PubMed  Google Scholar 

  75. Kim K-H, Kim K-S, Choi B-J, Chung K-H, Chang Y-C, Lee S-D, et al. Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong) in adjuvant-induced arthritic rats. J Ethnopharmacol. 2005;96(3):497–506.

    Article  PubMed  Google Scholar 

  76. Zhao L, Bao-Ping J, Li B, Zhou F, Li J-H, Luo Y-C. Immunomodulatory effects of aqueous extract of velvet antler (Cervus elaphus Linnaeus) and its simulated gastrointestinal digests on immune cells in vitro. J Food Drug Anal. 2009;17(4).

  77. Kuo C-Y, Cheng Y-T, Ho S-T, Yu C-C, Chen M-J. Comparison of anti-inflammatory effect and protein profile between the water extracts from Formosan sambar deer and red deer. J Food Drug Anal. 2018;26(4):1275–82.

    Article  CAS  PubMed  Google Scholar 

  78. Li-Chan EC. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci. 2015;1:28–37.

    Article  Google Scholar 

  79. Kim J, Kim S-K. Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Curr Protein Pept. 2013;14(3):177–82.

    Article  CAS  Google Scholar 

  80. Renner MK, Shen Y-C, Cheng X-C, Jensen PR, Frankmoelle W, Kauffman CA, et al. Cyclomarins A–C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc. 1999;121(49):11273–6.

    Article  CAS  Google Scholar 

  81. Barbie P, Kazmaier U. Total synthesis of cyclomarin A, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Organic letters. 2015;18(2):204–7.

    Article  CAS  PubMed  Google Scholar 

  82. Jacobson PB, Jacobs RS. Fuscoside: an anti-inflammatory marine natural product which selectively inhibits 5-lipoxygenase. Part I: physiological and biochemical studies in murine inflammatory models. J Pharmacol Exp Ther. 1992;262(2):866–73.

    CAS  PubMed  Google Scholar 

  83. Randazzo A, Bifulco G, Giannini C, Bucci M, Debitus C, Cirino G, et al. Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J Am Chem Soc. 2001;123(44):10870–6.

    Article  CAS  PubMed  Google Scholar 

  84. Ahn C-B, Je J-Y, Cho Y-S. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Res Int. 2012;49(1):92–8.

    Article  CAS  Google Scholar 

  85. Ahn C-B, Cho Y-S, Je J-Y. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 2015;168:151–6.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang L-H, Longley RE, Koehn FE. Antiproliferative and immunosuppressive properties of microcolin A, a marine-derived lipopeptide. Life Sci. 1997;60(10):751–62.

    Article  CAS  PubMed  Google Scholar 

  87. Malmberg AB, Gilbert H, McCabe RT, Basbaum AI. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain. 2003;101(1–2):109–16.

    Article  CAS  PubMed  Google Scholar 

  88. Sandall D, Satkunanathan N, Keays D, Polidano M, Liping X, Pham V, et al. A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry. 2003;42(22):6904–11.

    Article  CAS  PubMed  Google Scholar 

  89. McGivern JG. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tan LT, Williamson RT, Gerwick WH, Watts KS, McGough K, Jacobs R. cis, cis-and trans, trans-Ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga ceratodictyon s pongiosum and symbiotic sponge sigmadocia s ymbiotica. J Organic Chem. 2000;65(2):419–25.

    Article  CAS  Google Scholar 

  91. Cheung RCF, Ng TB, Wong JH. Marine peptides: Bioactivities and applications. Mar Drugs. 2015;13(7):4006–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Billingham M, Morley J, HANSON JM, Shipolini R, Vernon C. An anti-inflammatory peptide from bee venom. Nature. 1973;245(5421):163.

    Article  CAS  PubMed  Google Scholar 

  93. Eiseman JL, Von Bredow J, Alvares AP. Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem Pharmacol. 1982;31(6):1139–46.

    Article  CAS  PubMed  Google Scholar 

  94. Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, et al. The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci. 2002;71(2):191–204.

    Article  CAS  PubMed  Google Scholar 

  95. Kwon YB, Lee HJ, Han HJ, Mar WC, Lee H-J, Yang I-S et al. Bee venom pretreatment has both an antinociceptive and anti-inflammatory effect on carrageenan-induced inflammation. J Vet Med Sci. 2001;63(3):251–9.

    Article  PubMed  Google Scholar 

  96. Kwon YB, Kim HW, Ham TW, Yoon SY, Roh DH, Han HJ, et al. The anti-inflammatory effect of bee venom stimulation in a mouse air pouch model is mediated by adrenal medullary activity. J Neuroendocrinol. 2003;15(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  97. Lee J-D, Kim S-Y, Kim T-W, Lee S-H, Yang H-I, Lee D-I, et al. Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. Am J Chin Med. 2004;32(03):361–7.

    Article  PubMed  Google Scholar 

  98. Sobral F, Sampaio A, Falcão S, Queiroz MJR, Calhelha RC, Vilas-Boas M, et al. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem Toxicol. 2016;94:172–7.

    Article  CAS  PubMed  Google Scholar 

  99. Kim W-H, An H-J, Kim J-Y, Gwon M-G, Gu H, Park J-B, et al. Bee venom inhibits porphyromonas gingivalis lipopolysaccharides-induced pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. Molecules. 2016;21(11):1508.

    Article  CAS  PubMed Central  Google Scholar 

  100. Chung H-J, Lee J, Shin J-S, Kim M-r, Koh W, Kim M-J, et al. In vitro and in vivo anti-allergic and anti-inflammatory effects of eBV, a newly developed derivative of bee venom, through modulation of IRF3 signaling pathway in a carrageenan-induced edema model. PLoS One. 2016;11(12):e0168120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Im EJ, Kim SJ, Hong SB, Park J-K, Rhee MH. Anti-inflammatory activity of bee venom in BV2 microglial cells: mediation of MyD88-dependent NF-κB signaling pathway. Evid Based Complement Alternat Med. 2016;2016.

  102. Cai M, Lee JH, Yang EJ. Bee venom ameliorates cognitive dysfunction caused by neuroinflammation in an animal model of vascular dementia. Mol Neurobiol. 2017;54(8):5952–60.

    Article  CAS  PubMed  Google Scholar 

  103. Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel). 2015;7(4):1126–50.

    Article  CAS  Google Scholar 

  104. Wan T, Li L, Zhu Z, Liu S, Zhao Y, Yu M. Scorpion venom active polypeptide may be a new external drug of diabetic ulcer. Evid Based Complement Alternat Med. 2017.

  105. Zhu L, Yang X-P, Janic B, Rhaleb N-E, Harding P, Nakagawa P, et al. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am J Physiol Heart Circ Physiol. 2016;310(9):H1176-H83.

    Article  Google Scholar 

  106. Ruan Y, Yao L, Zhang B, Zhang S, Guo J. Anti-inflammatory effects of Neurotoxin-Nna, a peptide separated from the venom of Naja naja atra. BMC Complement Altern Med. 2013;13(1):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang N, Huang Y, Li A, Jiang H, Wang J, Li J, et al. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China Sea. Int J Mol Sci. 2016;17(11):1940.

    Article  CAS  PubMed Central  Google Scholar 

  108. Brook M, Tomlinson GH, Miles K, Smith RW, Rossi AG, Hiemstra PS, et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci. 2016;113(16):4350–5.

    Article  CAS  PubMed  Google Scholar 

  109. Perretti M, Dalli J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol. 2009;158(4):936–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca 2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6(6):449.

    Article  CAS  PubMed  Google Scholar 

  111. Oliani SM, Damazo AS, Perretti M. Annexin 1 localisation in tissue eosinophils as detected by electron microscopy. Mediators Inflamm. 2002;11(5):287–92.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Perretti M, Gavins FN. Annexin 1: an endogenous anti-inflammatory protein. Physiology. 2003;18(2):60–4.

    Article  CAS  Google Scholar 

  113. Perretti M, Di Filippo C, D’Amico M, Dalli J. Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide. PLoS One. 2017;12(4):e0175786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res. 2016;2016.

  115. Vago JP, Nogueira CR, Tavares LP, Soriani FM, Lopes F, Russo RC, et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol. 2012;92(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  116. McArthur S, Gobbetti T, Kusters DH, Reutelingsperger CP, Flower RJ, Perretti M. Definition of a novel pathway centered on lysophosphatidic acid to recruit monocytes during the resolution phase of tissue inflammation. J Immunol. 2015:1500733.

  117. Maderna P, Yona S, Perretti M, Godson C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26. The J Immunol. 2005;174(6):3727–33.

    Article  CAS  PubMed  Google Scholar 

  118. Yona S, Heinsbroek SE, Peiser L, Gordon S, Perretti M, Flower RJ. Impaired phagocytic mechanism in annexin 1 null macrophages. Br J Pharmacol. 2006;148(4):469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lim LH, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J. 2007;21(4):968–75.

    Article  CAS  PubMed  Google Scholar 

  120. Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, et al. A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. J Immunol. 2010;185(5):3057–63.

    Article  CAS  PubMed  Google Scholar 

  121. Bizzarro V, Petrella A, Parente L. Annexin A1: novel roles in skeletal muscle biology. J Cell Physiol. 2012;227(8):3007–15.

    Article  CAS  PubMed  Google Scholar 

  122. Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol. 2012;3:354.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene. 2011;30(36):3887.

    Article  CAS  PubMed  Google Scholar 

  124. Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, Clark AJ, et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci. 2013:201308253.

  125. Ferlazzo V, D’agostino P, Milano S, Caruso R, Feo S, Cillari E, et al. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis. Int Immunopharmacol. 2003;3(10–11):1363–9.

    Article  CAS  PubMed  Google Scholar 

  126. D’acquisto F, Perretti M, Flower R. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol. 2008;155(2):152–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gavins FN, Yona S, Kamal AM, Flower RJ, Perretti M. Leukocyte antiadhesive actions of annexin 1: ALXR-and FPR-related anti-inflammatory mechanisms. Blood. 2003;101(10):4140–7.

    Article  CAS  PubMed  Google Scholar 

  128. Yazid S, Gardner PJ, Carvalho L, Chu CJ, Flower RJ, Solito E, et al. Annexin-A1 restricts Th17 cells and attenuates the severity of autoimmune disease. J Autoimmun. 2015;58:1–11.

    Article  CAS  PubMed  Google Scholar 

  129. Purvis GS, Chiazza F, Chen J, Azevedo-Loiola R, Martin L, Kusters DH, et al. Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes. Diabetologia. 2018;61(2):482–95.

    Article  CAS  PubMed  Google Scholar 

  130. Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, et al. Proresolving protein Annexin A1: the role in type 2 diabetes mellitus and obesity. Biomed Pharmacother. 2018;103:482–9.

    Article  CAS  PubMed  Google Scholar 

  131. Perucci LO, Carneiro FS, Ferreira CN, Sugimoto MA, Soriani FM, Martins GG, et al. Annexin A1 is increased in the plasma of preeclamptic women. PLoS One. 2015;10(9):e0138475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sena A, Grishina I, Thai A, Goulart L, Macal M, Fenton A, et al. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns disease. PLoS One. 2013;8(10):e76969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pan B, Kong J, Jin J, Kong J, He Y, Dong S, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2016;1861(6):501–12.

    Article  CAS  Google Scholar 

  134. de Paula-Silva M, Barrios BE, Macció-Maretto L, Sena AA, Farsky SHP, Correa SG, et al. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem Pharmacol. 2016;115:104–13.

    Article  CAS  PubMed  Google Scholar 

  135. Hiramoto H, Dansako H, Takeda M, Satoh S, Wakita T, Ikeda M, et al. Annexin A1 negatively regulates viral RNA replication of hepatitis C virus. Acta Med Okayama. 2015;69(2):71–8.

    CAS  PubMed  Google Scholar 

  136. Wang L, Bi J, Yao C, Xu X, Li X, Wang S, et al. Annexin A1 expression and its prognostic significance in human breast cancer. Neoplasma. 2010;57(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  137. Hsiang CH, Tunoda T, Whang YE, Tyson DR, Ornstein DK. The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells. Prostate. 2006;66(13):1413–24.

    Article  CAS  PubMed  Google Scholar 

  138. Guo C, Liu S, Sun M-Z. Potential role of Anxa1 in cancer. Future oncology. 2013;9(11):1773–93.

    Article  CAS  PubMed  Google Scholar 

  139. Zwirzitz A, Reiter M, Skrabana R, Ohradanova-Repic A, Majdic O, Gutekova M, et al. Lactoferrin is a natural inhibitor of plasminogen activation. J Biol Chem. 2018:jbc-RA118.

  140. Puddu P, Valenti P, Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie. 2009;91(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  141. Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, et al. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front Immunol. 2018;9:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Suzuki YA, Lönnerdal B. Characterization of mammalian receptors for lactoferrin. Biochem Cell Biol. 2002;80(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  143. Gifford JL, Hunter HN, Vogel H. Lactoferricin Cell Mol Life Sci. 2005;62(22):2588.

    Article  CAS  PubMed  Google Scholar 

  144. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta Protein Struct Mol Enzymol. 1992;1121(1–2):130–6.

    Article  CAS  Google Scholar 

  145. Håversen L, Baltzer L, Dolphin G, Hanson L, Mattsby-Baltzer I. Anti-Inflammatory Activities of Human Lactoferrin in Acute Dextran Sulphate-Induced Colitis in Mice. Scand J Immunol. 2003;57(1):2–10.

    Article  PubMed  Google Scholar 

  146. Sudheendra U, Dhople V, Datta A, Kar RK, Shelburne CE, Bhunia A, et al. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Eur J Med Chem. 2015;91:91–9.

    Article  CAS  PubMed  Google Scholar 

  147. Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, et al. Human β-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol. 2010;40(4):1073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nguyen TX, Cole AM, Lehrer RI. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides. 2003;24(11):1647–54.

    Article  CAS  PubMed  Google Scholar 

  149. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710.

    Article  CAS  PubMed  Google Scholar 

  150. Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA. Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol. 2010;5(1):99–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shi J, Aono S, Lu W, Ouellette AJ, Hu X, Ji Y, et al. A novel role for defensins in intestinal homeostasis: regulation of IL-1β secretion. J Immunol. 2007;179(2):1245–53.

    Article  CAS  PubMed  Google Scholar 

  152. Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012;4(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  153. Sørensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of β-defensin expression in human skin by microbial stimuli. J Immunol. 2005;174(8):4870–9.

    Article  PubMed  Google Scholar 

  154. Ryan LK, Dai J, Yin Z, Megjugorac N, Uhlhorn V, Yim S, et al. Modulation of human β-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J Leukoc Biol. 2011;90(2):343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, et al. Human β-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol. 2002;118(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  156. Chadebech P, Goidin D, Jacquet C, Viac J, Schmitt D, Staquet M. Use of human reconstructed epidermis to analyze the regulation of β-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS. Cell Biol Toxicol. 2003;19(5):313–24.

    Article  CAS  PubMed  Google Scholar 

  157. Krisanaprakornkit S, Kimball JR, Dale BA. Regulation of human β-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-κB transcription factor family. J Immunol. 2002;168(1):316–24.

    Article  CAS  PubMed  Google Scholar 

  158. Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci. 2002;110(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  159. Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Seminars in cell & developmental biology; 2018: Elsevier.

  160. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, et al. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci. 2007;104(47):18631–5.

    Article  CAS  PubMed  Google Scholar 

  161. Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, et al. Antimicrobial peptides human β-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol. 2010;184(7):3526–34.

    Article  CAS  PubMed  Google Scholar 

  162. Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S. The melanocortin system in control of inflammation. Sci World J. 2010;10:1840–53.

    Article  CAS  Google Scholar 

  163. Catania A, Gatti S, Colombo G, Lipton JM. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev. 2004;56(1):1–29.

    Article  CAS  PubMed  Google Scholar 

  164. Capsoni F, Ongari A, Colombo G, Turcatti F, Catania A. The synthetic melanocortin (CKPV) 2 exerts broad anti-inflammatory effects in human neutrophils. Peptides. 2007;28(10):2016–22.

    Article  CAS  PubMed  Google Scholar 

  165. Zouki C, Ouellet S, Filep JG. The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J. 2000;14(3):572–80.

    Article  CAS  PubMed  Google Scholar 

  166. Lloret S, Moreno J. In vitro and in vivo effects of the anti-inflammatory peptides, antiflammins. Biochem Pharmacol. 1992;44(7):1437–41.

    Article  CAS  PubMed  Google Scholar 

  167. Camussi G, Tetta C, Bussolino F, Baglioni C. Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med. 1990;171(3):913–27.

    Article  CAS  PubMed  Google Scholar 

  168. Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, et al. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol. 2016;310(10):F1026-F34.

    Article  CAS  Google Scholar 

  169. Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N, Rhaleb N-E. Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 2003;42(6):1164–70.

    Article  CAS  PubMed  Google Scholar 

  170. Rhaleb N-E, Pokharel S, Sharma U, Carretero OA. Renal protective effects of N-acetyl-Ser-Asp-Lys-Pro in DOCA-salt hypertensive mice. J Hypertens. 2011;29(2):330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nakagawa P, Masjoan-Juncos JX, Basha H, Janic B, Worou ME, Liao TD, et al. Effects of N-acetyl-seryl-asparyl-lysyl-proline on blood pressure, renal damage, and mortality in systemic lupus erythematosus. Physiol Rep. 2017;5(2).

  172. Douglas RG, Ehlers MR, Sturrock ED. Antifibrotic peptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP): opportunities for angiotensin-converting enzyme inhibitor design. Clin Exp Pharmacol Physiol. 2013;40(8):535–41.

    Article  CAS  PubMed  Google Scholar 

  173. Dellai A, Maricic I, Kumar V, Arutyunyan S, Bouraoui A, Nefzi A. Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and Met-cherimolacyclopeptide B and their analogs. Bioorg Med Chem Lett. 2010;20(19):5653–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wen S-J, Hu T-S, Yao Z-J. Macrocyclization studies and total synthesis of cyclomarin C, an anti-inflammatory marine cyclopeptide. Tetrahedron. 2005;61(21):4931–8.

    Article  CAS  Google Scholar 

  175. Festa C, De Marino S, Sepe V, Monti MC, Luciano P, D’Auria MV, et al. Perthamides C and D, two new potent anti-inflammatory cyclopeptides from a solomon lithistid sponge theonella swinhoei. Tetrahedron. 2009;65(50):10424–9.

    Article  CAS  Google Scholar 

  176. Bucci M, Cantalupo A, Vellecco V, Panza E, Monti MC, Zampella A, et al. Perthamide C inhibits eNOS and iNOS expression and has immunomodulating activity in vivo. PLoS One. 2013;8(3):e57801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chuang P-H, Hsieh P-W, Yang Y-L, Hua K-F, Chang F-R, Shiea J, et al. Cyclopeptides with anti-inflammatory activity from seeds of Annona montana. J Nat Prod. 2008;71(8):1365–70.

    Article  CAS  PubMed  Google Scholar 

  178. Afacan J, TY Yeung N, Pena AM, EW Hancock O. R. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des. 2012;18(6):807–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge and thank their respective institutes and universities.

Funding

This compilation is a review article written, analyzed, and designed by its authors and required no substantial funding to be stated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Dadar.

Ethics declarations

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper. It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadar, M., Shahali, Y., Chakraborty, S. et al. Antiinflammatory peptides: current knowledge and promising prospects. Inflamm. Res. 68, 125–145 (2019). https://doi.org/10.1007/s00011-018-1208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1208-x

Keywords

Navigation