Skip to main content

Advertisement

Log in

Transforming growth factor-β1 and phosphatases modulate COX-2 protein expression and TAU phosphorylation in cultured immortalized podocytes

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The aim of this study is to elucidate TGF-β1 signaling pathways involved in COX-2 protein induction and modulation of TAU protein phosphorylation in cultured podocytes.

Materials, treatment and methods

In vitro cultured immortalized podocytes were stimulated with TGF-β1 in presence and absence of pharmacologic inhibitors for various signaling pathways and phosphatases. Then, COX-2 protein expression, as well as P38MAPK, AKT and TAU phosphorylation levels were evaluated by western blot analysis.

Results

TGF-β1 induction of COX-2 protein levels was completely blocked by pharmacologic inhibitors of phosphatases, P38 MAPK, or NF-қB pathways. Time course experiments showed that TGF-β1 activated p38 MAPK after 5 min of stimulation. Interestingly, podocyte co-incubated with TGF-β1, high glucose and/or PGE2 showed strong increase in p38 MAPK and AKT phosphorylation as well as COX- 2 protein expression levels. Levels of phosphorylated AKT were further reduced and levels of phosphorylated p38 were increased when PGE2 was added to the culture media. Interestingly, selective phosphatases inhibitors completely abrogated PGE2-induced P38 MAPK and TAU phosphorylation. Also, inhibition of phosphatases reversed TGF-β1–induced COX-2 protein expression either alone or when incubated with high glucose or PGE2.

Conclusion

These data suggest TGF-β1 mediates its effect in podocyte through novel signaling mechanisms including phosphatases and TAU protein phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ritz E, Rychlik I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am J Kidney Dis. 1999;34:795–808.

    Article  CAS  PubMed  Google Scholar 

  2. Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev. 2004;25:971–1010.

    Article  CAS  PubMed  Google Scholar 

  3. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16:2941–52.

    Article  CAS  PubMed  Google Scholar 

  4. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69:2131–47.

    Article  CAS  PubMed  Google Scholar 

  5. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA. 2000;97:8015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han DC, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisense TGF-beta1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. Am J Physiol Renal Physiol. 2000;278:F628-34.

    Article  PubMed  Google Scholar 

  7. Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2003; 23:532–43.

    Article  CAS  PubMed  Google Scholar 

  8. Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest 1994; 93:536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73.

    Article  CAS  PubMed  Google Scholar 

  10. Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol 2003; 200:537–46.

    Article  CAS  PubMed  Google Scholar 

  11. Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transpl. 2009;24:2645–55.

    Article  CAS  Google Scholar 

  12. Wu DT, Bitzer M, Ju W, Mundel P, Bottinger EP. TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol. 2005;16:3211–21.

    Article  CAS  PubMed  Google Scholar 

  13. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 2001;108:807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xavier S, Niranjan T, Krick S, Zhang T, Ju W, Shaw AS, et al. TbetaRI independently activates Smad- and CD2AP-dependent pathways in podocytes. J Am Soc Nephrol. 2009;20:2127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kidger AM, Keyse SM. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol 2016; 50:125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Worby CA, Dixon JE. Pten Annu Rev Biochem 2014; 83:641–69.

    Article  CAS  PubMed  Google Scholar 

  17. Lin J, Shi Y, Peng H, Shen X, Thomas S, Wang Y, et al. Loss of PTEN promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. J Pathol. 2015;236:30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santamaria B, Marquez E, Lay A, Carew RM, Gonzalez-Rodriguez A, Welsh GI, et al. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim Biophys Acta. 2015;1853:3224–34.

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Li ZP, Zhang RQ, Zhang HM. Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem Biophys Res Commun. 2017;483:318–24.

    Article  CAS  PubMed  Google Scholar 

  20. Jung KY, Chen K, Kretzler M, Wu C. TGF-beta1 regulates the PINCH-1-integrin-linked kinase-alpha-parvin complex in glomerular cells. J Am Soc Nephrol. 2007;18:66–73.

    Article  CAS  PubMed  Google Scholar 

  21. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  CAS  PubMed  Google Scholar 

  22. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580:2811–20.

    Article  CAS  PubMed  Google Scholar 

  23. Yu L, Border WA, Huang Y, Noble NA. TGF-beta isoforms in renal fibrogenesis. Kidney Int 2003; 64:844–56.

    Article  CAS  PubMed  Google Scholar 

  24. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69:145–82.

    Article  CAS  PubMed  Google Scholar 

  25. Faour WH, He Y, He QW, de Ladurantaye M, Quintero M, Mancini A, et al. Prostaglandin E(2) regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen-activated protein kinase in interleukin-1 beta-treated human synovial fibroblasts. J Biol Chem. 2001;276:31720–31.

    Article  CAS  PubMed  Google Scholar 

  26. Tomasoni S, Noris M, Zappella S, Gotti E, Casiraghi F, Bonazzola S, et al. Upregulation of renal and systemic cyclooxygenase-2 in patients with active lupus nephritis. JASN. 1998;9:1202–12.

    CAS  PubMed  Google Scholar 

  27. Weichert W, Paliege A, Provoost AP, Bachmann S. Upregulation of juxtaglomerular NOS1 and COX-2 precedes glomerulosclerosis in fawn-hooded hypertensive rats. Am J Physiol Renal Physiol. 2001;280:F706–14.

    Article  CAS  PubMed  Google Scholar 

  28. Takano T, Cybulsky AV. Complement C5b-9-mediated arachidonic acid metabolism in glomerular epithelial cells : role of cyclooxygenase-1 and -2. Am J Pathol. 2000;156:2091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang JL, Cheng HF, Zhang MZ, McKanna JA, Harris RC. Selective increase of cyclooxygenase-2 expression in a model of renal ablation. Am J Physiol. 1998;275:F613–22.

    CAS  PubMed  Google Scholar 

  30. Fujihara CK, Antunes GR, Mattar AL, Andreoli N, Malheiros DM, Noronha IL, et al. Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int. 2003;64:2172–81.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng H, Wang S, Jo Y-I, Hao C-M, Zhang M, Fan X, et al. Overexpression of cyclooxygenase-2 predisposes to podocyte injury. J Am Soc Nephrol. 2007;18:551–9.

    Article  CAS  PubMed  Google Scholar 

  32. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol. 2004;286:F693–701.

    Article  CAS  PubMed  Google Scholar 

  33. Faour WH, Gomi K, Kennedy CR. PGE(2) induces COX-2 expression in podocytes via the EP(4) receptor through a PKA-independent mechanism. Cell Signal. 2008;20:2156–64.

    Article  CAS  PubMed  Google Scholar 

  34. Faour WH, Thibodeau JF, Kennedy CR. Mechanical stretch and prostaglandin E2 modulate critical signaling pathways in mouse podocytes. Cell Signal. 2010;22:1222–30.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng H, Fan X, Moeckel GW, Harris RC. Podocyte COX-2 exacerbates diabetic nephropathy by increasing podocyte (pro)renin receptor expression. JASN. 2011;22:1240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Chang J-H, Paik S-Y, Tang Y, Eisner W, Spurney RF. Calcineurin (CN) activation promotes apoptosis of glomerular podocytes both in vitro and in vivo. Mol Endocrinol. 2011;25:1376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008;4:39–45.

    Article  CAS  PubMed  Google Scholar 

  39. Stitt-Cavanagh EM, Faour WH, Takami K, Carter A, Vanderhyden B, Guan Y, et al. A maladaptive role for EP4 receptors in podocytes. JASN. 2010;21:1678–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000;20:4265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-ß and TNF-α, by human macrophages. J Immunol. 1998;160:3513–21.

    CAS  PubMed  Google Scholar 

  42. Faour WH, Mancini A, He QW, Di Battista JA. T-cell-derived interleukin-17 regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of the p38 mitogen-activated protein kinase cascade: role of distal sequences in the 3′-untranslated region of COX-2 mRNA. J Biol Chem. 2003;278:26897–907.

    Article  CAS  PubMed  Google Scholar 

  43. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, et al. AMP-activated protein kinase (AMPK) negatively regulates nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem. 2010;285:37503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr Wissam H. Faour is a recipient of a grant from the Lebanese National Council for Scientific Research and an Assistant Professor of Pharmacology at the School of Medicine at the Lebanese American University. This project has been funded with support from the National Council for Scientific Research in Lebanon, Grant number: 01-08-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissam H. Faour.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, M.S., Kennedy, C.R.J., Stephan, J.S. et al. Transforming growth factor-β1 and phosphatases modulate COX-2 protein expression and TAU phosphorylation in cultured immortalized podocytes. Inflamm. Res. 67, 191–201 (2018). https://doi.org/10.1007/s00011-017-1110-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1110-y

Keywords

Navigation