Skip to main content
Log in

In vivo proinflammatory activity of generations 0–3 (G0–G3) polyamidoamine (PAMAM) nanoparticles

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The aim of this study was to determine whether different generations (G) polyamidoamine (PAMAM) dendrimers possess proinflammatory activities in vivo.

Material or subjects

Several hundred female CD-1 mice were used to test four different PAMAM dendrimers using the murine air pouch model.

Treatment

Mice received appropriate negative and positive controls or G0-G3 PAMAM nanoparticles at 100 and 500 µg/ml into air pouches.

Methods

Exudates were harvested after 3, 6, 24 and 48 h. Cell pellets and supernatants were used to determine the number of total leukocytes and neutrophils and to detect the production of several analytes by an antibody array approach, respectively. One-way analysis of variance was used for statistical analysis.

Results

PAMAM dendrimers rapidly increased a leukocyte influx after 3 h, the vast majority of cells being neutrophils. This was also observed after 6 and 24 h, and resolution of inflammation was noted after 48 h. In general, the increased production of a greater number of analytes detected in the exudates after 6 h correlated with the number of dendrimer generations (G3 > G2 > G1 > G0).

Conclusions

PAMAM dendrimers devoid of any delivering molecules possess proinflammatory activities in vivo by themselves, probably via the production of different chemokines released by air pouch lining cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labieniec-Watala M, Watala C. PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci. 2015;104:2–14.

    Article  CAS  PubMed  Google Scholar 

  2. Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40:173–90.

    Article  CAS  PubMed  Google Scholar 

  3. Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today. 2000;3:232–45.

    Article  CAS  PubMed  Google Scholar 

  4. Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJ, et al. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm. 2010;399:140–7.

    Article  CAS  PubMed  Google Scholar 

  5. Benchaala I, Mishra MK, Wykes SM, Hali M, Kannan RM, Whittum-Hudson JA. Folate-functionalized dendrimers for targeting Chlamydia-infected tissues in a mouse model of reactive arthritis. Int J Pharm. 2014;466:258–65.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Li Y, Fan J, Wang Z, Zeng X, Sun Y, et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials. 2014;35:7588–97.

    Article  CAS  PubMed  Google Scholar 

  7. Uram L, Szuster M, Gargasz K, Filipowicz A, Walajtys-Rode E, Wolowiec S. In vitro cytotoxicity of the ternary PAMAM G3-pyridoxal-biotin bioconjugate. Int J Nanomed. 2013;8:4707–20.

    Google Scholar 

  8. Ozturk K, Erturk AS, Sarisozen C, Tulu M, Calis S. Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers. J Microencapsul. 2014;31:127–36.

    Article  CAS  PubMed  Google Scholar 

  9. Goncalves M, Castro R, Rodrigues J, Tomas H. The effect of PAMAM dendrimers on mesenchymal stem cell viability and differentiation. Curr Med Chem. 2012;19:4969–75.

    Article  CAS  PubMed  Google Scholar 

  10. Vandooren J, Berghmans N, Dillen C, Van Aelst I, Ronsse I, Israel LL, et al. Intradermal air pouch leukocytosis as an in vivo test for nanoparticles. Int J Nanomed. 2013;8:4745–56.

    Article  Google Scholar 

  11. Girard D. Using the air pouch model for assessing in vivo inflammatory activity of nanoparticles. Int J Nanomed. 2014;9:1105–7.

    Article  Google Scholar 

  12. Goncalves DM, Girard D. Titanium dioxide (TiO(2)) nanoparticles induce neutrophil influx and local production of several proinflammatory mediators in vivo. Int Immunopharmacol. 2011;21:21.

    Google Scholar 

  13. Goncalves DM, Girard D. Evidence that polyhydroxylated C60 fullerenes (fullerenols) amplify the effect of lipopolysaccharides to induce rapid leukocyte infiltration in vivo. Chem Res Toxicol. 2013;26:1884–92.

    Article  CAS  PubMed  Google Scholar 

  14. Babin K, Antoine F, Goncalves DM, Girard D. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol Lett. 2013;221:57–63.

    Article  CAS  PubMed  Google Scholar 

  15. Ratthe C, Ennaciri J, Garces Goncalves DM, Chiasson S, Girard D. Interleukin (IL)-4 induces leukocyte infiltration in vivo by an indirect mechanism. Mediators Inflamm 2009; 2009:193970.

  16. Dobrovolskaia MA, Neun BW, Clogston JD, Ding H, Ljubimova J, McNeil SE. Ambiguities in applying traditional Limulus amebocyte lysate tests to quantify endotoxin in nanoparticle formulations. Nanomedicine (London, England) 2010; 5:555–62.

  17. Moisan E, Chiasson S, Girard D. The intriguing normal acute inflammatory response in mice lacking vimentin. Clin Exp Immunol. 2007;150:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ratthe C, Ennaciri J, Garces Goncalves DM, Chiasson S, Girard D. Interleukin (IL)-4 induces leukocyte infiltration in vivo by an indirect mechanism. Mediators Inflamm. 2009;193970:10.

    Google Scholar 

  19. Pelletier M, Bouchard A, Girard D. In vivo and in vitro roles of IL-21 in inflammation. J Immunol. 2004;173:7521–30.

    Article  CAS  PubMed  Google Scholar 

  20. Antoine F, Simard JC, Girard D. Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo. Int Immunopharmacol. 2013;17:1101–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lavastre V, Cavalli H, Ratthe C, Girard D. Anti-inflammatory effect of Viscum album agglutinin-I (VAA-I): induction of apoptosis in activated neutrophils and inhibition of lipopolysaccharide-induced neutrophilic inflammation in vivo. Clin Exp Immunol. 2004;137:272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pelletier M, Girard D. Biological functions of interleukin-21 and its role in inflammation. Sci World J. 2007;7:1715–35.

    Article  CAS  Google Scholar 

  23. Escribano E, Fernandez-Pacheco R, Valdivia JG, Ibarra MR, Marquina C, Queralt J. Effect of magnet implant on iron biodistribution of Fe@C nanoparticles in the mouse. Arch Pharm Res. 2012;35:93–100.

    Article  CAS  PubMed  Google Scholar 

  24. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86:1123–36.

    Article  CAS  PubMed  Google Scholar 

  25. Oh SJ, Kim H, Liu Y, Han HK, Kwon K, Chang KH, et al. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Toxicol Lett. 2014;225:422–32.

    Article  CAS  PubMed  Google Scholar 

  26. Neun BW, Dobrovolskaia MA. Detection and quantitative evaluation of endotoxin contamination in nanoparticle formulations by LAL-based assays. Methods Mol Biol. 2011;697:121–30.

    Article  CAS  PubMed  Google Scholar 

  27. Goncalves DM, Girard D. Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis-dependent and reactive oxygen species-independent mechanism. Toxicol In Vitro. 2014;28:926–31.

    Article  CAS  PubMed  Google Scholar 

  28. Ledall J, Fruchon S, Garzoni M, Pavan GM, Caminade AM, Turrin CO, et al. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes. Nanoscale. 2015;7:17672–84.

    Article  CAS  PubMed  Google Scholar 

  29. Qi R, Majoros I, Misra AC, Koch AE, Campbell P, Marotte H, et al. Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. J Biomed Nanotechnol. 2015;11:1431–41.

    Article  CAS  PubMed  Google Scholar 

  30. Fruchon S, Mouriot S, Thiollier T, Grandin C, Caminade AM, Turrin CO, et al. Repeated intravenous injections in non-human primates demonstrate preclinical safety of an anti-inflammatory phosphorus-based dendrimer. Nanotoxicology. 2015;9:433–41.

    Article  CAS  PubMed  Google Scholar 

  31. Fruchon S, Caminade AM, Abadie C, Davignon JL, Combette JM, Turrin CO, et al. An azabisphosphonate-capped poly(phosphorhydrazone) dendrimer for the treatment of endotoxin-induced uveitis. Molecules. 2013;18:9305–16.

    Article  CAS  PubMed  Google Scholar 

  32. Neibert K, Gosein V, Sharma A, Khan M, Whitehead MA, Maysinger D, et al. “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm. 2013;10:2502–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bosch X. Dendrimers to treat rheumatoid arthritis. ACS Nano. 2011;5:6779–85.

    Article  CAS  PubMed  Google Scholar 

  34. Hayder M, Fruchon S, Fournie JJ, Poupot M, Poupot R. Anti-inflammatory properties of dendrimers per se. Sci World J. 2011;11:1367–82.

    Article  CAS  Google Scholar 

  35. Blattes E, Vercellone A, Eutamene H, Turrin CO, Theodorou V, Majoral JP, et al. Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc Natl Acad Sci USA. 2013;110:8795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KK. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg. 2014;49:1846–51.

    Article  PubMed  Google Scholar 

  37. Tang Y, Han Y, Liu L, Shen W, Zhang H, Wang Y, et al. Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice. Biomacromolecules. 2015;16:174–82.

    Article  CAS  PubMed  Google Scholar 

  38. Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33:979–88.

    Article  CAS  PubMed  Google Scholar 

  39. Chauhan AS, Diwan PV, Jain NK, Tomalia DA. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules. 2009;10:1195–202.

    Article  CAS  PubMed  Google Scholar 

  40. Wang B, Navath RS, Romero R, Kannan S, Kannan R. Anti-inflammatory and anti-oxidant activity of anionic dendrimer-N-acetyl cysteine conjugates in activated microglial cells. Int J Pharm. 2009;377:159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naha PC, Davoren M, Lyng FM, Byrne HJ. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol. 2010;246:91–9.

    Article  CAS  PubMed  Google Scholar 

  42. Neves SA, Dias-Baruff M, Freitas AL, Roque-Barreira MC. Neutrophil migration induced in vivo and in vitro by marine algal lectins. Inflamm Res Off J Eur Histamine Research Soc [et al]. 2001;50:486–90.

    CAS  Google Scholar 

  43. Pelletier M, Roberge CJ, Gauthier M, Vandal K, Tessier PA, Girard D. Activation of human neutrophils in vitro and dieldrin-induced neutrophilic inflammation in vivo. J Leukoc Biol. 2001;70:367–73.

    CAS  PubMed  Google Scholar 

  44. Tessier PA, Naccache PH, Clark-Lewis I, Gladue RP, Neote KS, McColl SR. Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J Immunol. 1997;159:3595–602.

    CAS  PubMed  Google Scholar 

  45. Mukherjee SP, Byrne HJ. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine. 2013;9:202–11.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Girard.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durocher, I., Girard, D. In vivo proinflammatory activity of generations 0–3 (G0–G3) polyamidoamine (PAMAM) nanoparticles. Inflamm. Res. 65, 745–755 (2016). https://doi.org/10.1007/s00011-016-0959-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0959-5

Keywords

Navigation