Skip to main content

Advertisement

Log in

CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To explore the influence of chemokine, CXCL16, on the expression of the receptor activator nuclear factor κB ligand (RANKL) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS).

Methods

The expression of CXCL16/CXCR6 and RANKL in RA or osteoarthritis (OA) patient synovia was examined by Western blot and immunohistochemistry. The serum concentration of CXCL16 and RANKL was measured by enzyme-linked immunosorbent assay (ELISA). RA-FLS were treated with recombinant CXCL16, and RANKL mRNA and protein were measured using PCR, Western blot and ELISA.

Results

The synovial expression of CXCL16, CXCR6, and RANKL was higher in RA patients than in patients with OA. The serum CXCL16 and RANKL levels were higher in RA patients compared with OA patients and healthy controls. CXCL16 correlated with erythrocyte sedimentation rate, C reactive protein, disease activity, serum rheumatoid factor, and RANKL. RA-FLS treated with CXCL16 showed markedly increased expression of RANKL. When STAT3 or p38 activation was blocked by an inhibitor, CXCL16 failed to upregulate RANKL expression. In contrast, inhibiting the Akt or Erk pathway did not achieve the same effect.

Conclusions

CXCL16 upregulates RANKL expression in RA-FLS and these effects are mainly mediated by the JAK2/STAT3 and p38/MAPK signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 1996;39:1781–90.

    Article  CAS  PubMed  Google Scholar 

  2. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.

    Article  CAS  PubMed  Google Scholar 

  3. Reece RJ, Canete JD, Parsons WJ, Emery P, Veale DJ. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum. 1999;42:1481–4.

    Article  CAS  PubMed  Google Scholar 

  4. Koch AE. Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis. 2003;62(Suppl 2):ii60–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Molenaar ET, Voskuyl AE, Dinant HJ, Bezemer PD, Boers M, Dijkmans BA. Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum. 2004;50:36–42.

    Article  PubMed  Google Scholar 

  6. Gravallese EM. Bone destruction in arthritis. Ann Rheum Dis. 2002;61(Suppl 2):ii84–6.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.

    Article  CAS  PubMed  Google Scholar 

  8. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  9. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lee SH, Kim TS, Choi Y, Lorenzo J. Osteoimmunology: cytokines and the skeletal system. BMB Rep. 2008;41:495–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 2012;64:1015–23.

    Article  CAS  PubMed  Google Scholar 

  12. Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, et al. Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol. 2009;183:7825–31.

    Article  CAS  PubMed  Google Scholar 

  13. Gronthos S, Zannettino AC. The role of the chemokine CXCL12 in osteoclastogenesis. Trends Endocrinol Metab. 2007;18:108–13.

    Article  CAS  PubMed  Google Scholar 

  14. Yang M, Mailhot G, MacKay CA, Mason-Savas A, Aubin J, Odgren PR. Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1gamma) in osteoclastogenesis in vivo and in vitro. Blood. 2006;107:2262–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ishida N, Hayashi K, Hattori A, Yogo K, Kimura T, Takeya T. CCR1 acts downstream of NFAT2 in osteoclastogenesis and enhances cell migration. J Bone Min Res. 2006;21:48–57.

    Article  CAS  Google Scholar 

  16. Nanki T, Shimaoka T, Hayashida K, Taniguchi K, Yonehara S, Miyasaka N. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum. 2005;52:3004–14.

    Article  CAS  PubMed  Google Scholar 

  17. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol. 2004;172:6362–72.

    Article  CAS  PubMed  Google Scholar 

  18. Matloubian M, David A, Engel S, Ryan JE, Cyster JG. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol. 2000;1:298–304.

    Article  CAS  PubMed  Google Scholar 

  19. Gough PJ, Garton KJ, Wille PT, Rychlewski M, Dempsey PJ, Raines EW. A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J Immunol. 2004;172:3678–85.

    Article  CAS  PubMed  Google Scholar 

  20. van der Voort R, van Lieshout AW, Toonen LW, Sloetjes AW, van den Berg WB, Figdor CG, et al. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum. 2005;52:1381–91.

    Article  PubMed  Google Scholar 

  21. Slauenwhite D, Gebremeskel S, Doucette CD, Hoskin DW, Johnston B. Regulation of cytokine polarization and T cell recruitment to inflamed paws in mouse collagen-induced arthritis by the chemokine receptor CXCR6. Arthritis Rheumatol. 2014;66:3001–12.

    Article  CAS  PubMed  Google Scholar 

  22. Kageyama Y, Torikai E, Nagano A. Anti-tumor necrosis factor-alpha antibody treatment reduces serum CXCL16 levels in patients with rheumatoid arthritis. Rheumatol Int. 2007;27:467–72.

    Article  CAS  PubMed  Google Scholar 

  23. Isozaki T, Arbab AS, Haas CS, Amin MA, Arendt MD, Koch AE, et al. Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis: studies in mice with K/BxN serum-induced arthritis. Arthritis Rheum. 2013;65:1736–46.

    Article  CAS  PubMed  Google Scholar 

  24. Nielung L, Christensen R, Danneskiold-Samsoe B, Bliddal H, Holm CC, Ellegaard K, et al. Validity and agreement between the 28-joint disease activity score based on C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis. Arthritis. 2015;2015:401690.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ruth JH, Haas CS, Park CC, Amin MA, Martinez RJ, Haines GK 3rd, et al. CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum. 2006;54:765–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kohler RE, Caon AC, Willenborg DO, Clark-Lewis I, McColl SR. A role for macrophage inflammatory protein-3 alpha/CC chemokine ligand 20 in immune priming during T cell-mediated inflammation of the central nervous system. J Immunol. 2003;170:6298–306.

    Article  CAS  PubMed  Google Scholar 

  28. Ruth JH, Volin MV, Haines GK 3rd, Woodruff DC, Katschke KJ Jr, Woods JM, et al. Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum. 2001;44:1568–81.

    Article  CAS  PubMed  Google Scholar 

  29. Kuboyama N, Abiko Y. Reduction of monocyte chemoattractant protein-1 expression in rheumatoid arthritis rat joints with light-emitting diode phototherapy. Laser Therapy. 2012;21:177–81.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH. Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:538–48.

    Article  CAS  PubMed  Google Scholar 

  31. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Investig. 2000;106:1481–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2:189–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Szekanecz Z, Kim J, Koch AE. Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol. 2003;15:15–21.

    Article  CAS  PubMed  Google Scholar 

  34. Mueller A, Strange PG. Mechanisms of internalization and recycling of the chemokine receptor, CCR5. Eur J Biochem/FEBS. 2004;271:243–52.

    Article  CAS  Google Scholar 

  35. Mueller A, Kelly E, Strange PG. Pathways for internalization and recycling of the chemokine receptor CCR5. Blood. 2002;99:785–91.

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Zhao J, Sun L, Yao Z, Liu R, Huang J, et al. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis. Biochem Biophys Res Commun. 2012;429:156–62.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Sterling JA, Fan KH, Vessella RL, Shyr Y, Hayward SW, et al. Loss of TGF-beta responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res. 2012;10:494–503.

    Article  PubMed Central  PubMed  Google Scholar 

  38. O’Brien CA, Gubrij I, Lin SC, Saylors RL, Manolagas SC. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem. 1999;274:19301–8.

    Article  PubMed  Google Scholar 

  39. Li CH, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, et al. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis. Biochem Biophys Res Commun. 2013;435:533–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG. TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun. 2007;359:1044–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17–25.

    Article  CAS  PubMed  Google Scholar 

  42. Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, et al. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J cell Biol. 2000;148:333–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81273293, No. 81471599, No. 81501387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-yuan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Authors’ Contribution

CL, LX, and XL designed the research. CL and LX performed the research and analyzed the data. CL, LX, and XL wrote the manuscript. JZ, LS, ZY, XD, RL, LY, and RX helped with sample collection and data analysis.

Additional information

Responsible Editor: Jason J. McDougall.

Chang-hong Li and Lin-lin Xu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ch., Xu, Ll., Zhao, Jx. et al. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway. Inflamm. Res. 65, 193–202 (2016). https://doi.org/10.1007/s00011-015-0905-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0905-y

Keywords

Navigation