Skip to main content

Advertisement

Log in

Midkine in vitamin D deficiency and its association with anti-Saccharomyces cerevisiae antibodies

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives and design

The growth factor midkine (MK) is a protein that is involved in cancer, inflammation, immunity. Vitamin D is a potent immunomodulator. Anti-Saccharomyces cerevisiae antibody (ASCA) is reported in autoimmune disorders, some of which are among the causes of vitamin D deficiency. The objective of this study was to investigate a possible association of MK and ASCA with vitamin D deficiency.

Materials and methods

208 adults presented to internal medicine outpatient clinic for history and physical examination has been studied. Serum biochemistry, vitamin D, MK, ASCA-IgG and -IgA, IL-1β, IL-6, IL-8, TNF-α, PDGF, VEGF were obtained.

Results

Vitamin D deficiency was 74.2 %. Serum MK level was significantly higher in vitamin D-deficient compared to vitamin D-sufficient individuals (1138.1 ± 262.8 vs 958.6 ± 189 pg/mL, respectively; P < 0.009). Serum MK levels were also significantly higher in both ASCA-IgG and -IgA positives compared to negatives (1318.5 ± 160.3 vs 1065.5 ± 256.1, P = 0.008 and 1347.7 ± 229.7 vs 1070.1 ± 250.9 pg/mL, P = 0.011, respectively). Vitamin D was significantly lower in ASCA positives (P = 0.044).Vitamin D showed positive correlation with IL-1β (r 0.338, P < 0.009) and negative correlation with VEGF (r −0.366, P < 0.004).

Conclusions

MK was significantly elevated in vitamin D deficiency and associated with ASCA positivity which was significantly increased in vitamin D deficiency. These findings suggested that molecular mechanism of vitamin D deficiency may be related with some inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kadomatsu K, Tomomura M, Muramatsu T. cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun. 1988;151(3):1312–8.

    Article  PubMed  CAS  Google Scholar 

  2. Aridome K, Tsutsui J, Takao S, Kadomatsu K, Ozawa M, Aikou T, Muramatsu T. Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res. 1995;86:655–61.

    Article  PubMed  CAS  Google Scholar 

  3. Garver RI Jr, Chan CS, Milner PG. Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues. Am J Respir Cell MolBiol. 1993;9(5):463–6.

    Article  CAS  Google Scholar 

  4. Jones DR. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br J Pharmacol. 2014;177(12):2925–39.

    Article  CAS  Google Scholar 

  5. Kadomatsu K, Kishida S, Tsubota S. The heparin-binding growth factor midkine: the biological activities and candidate receptors. J Biochem. 2013;153(6):511–21.

    Article  PubMed  CAS  Google Scholar 

  6. Muramatsu T. Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol. 2014;171(4):814–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gela A, Jovic S, Nordin SL, Egesten A. Midkine in host defence. Br J Pharmacol. 2014;171(4):859–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liedert A, Schinke T, Ignatius A, Amling M. The role of midkine in skeletal remodelling. Br J Pharmacol. 2014;171(4):870–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, Noda M, Muramatsu T, Kadomatsu K. Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J BiolChem. 2001;276:15868–75.

    CAS  Google Scholar 

  10. Weckbach LT, Muramatsu T, Walzog B. Midkine in inflammation. Scientific World J. 2011;11:2491–505.

    Article  CAS  Google Scholar 

  11. Muramatsu T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:410–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Takada T, Toriyama K, Muramatsu H, Song XJ, Torii S, Muramatsu T. Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem. 1997;122:453–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kato K, Kosugi T, Sato W, Arata-Kawai H, Ozaki T, Tsuboi N, Ito I, Tawada H, Yuzawa Y, Matsuo S, et al. Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Am J Pathol. 2006;168(1):9–19.

    Article  CAS  Google Scholar 

  14. Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg. 2006;44(3):633–41.

    Article  PubMed  Google Scholar 

  15. Narita H, Chen S, Komori K, Kadomatsu K. Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. J Vasc Surg. 2008;47(6):1322–9.

    Article  PubMed  Google Scholar 

  16. Liu X, Mashour GA, Webster HD, Kurtz A. Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin. GLIA. 1998;20(4):390–7.

    Article  Google Scholar 

  17. Krzystek-Korpacka M, Neubauer K, Matusiewicz M. Circulating midkine in Crohn’s Disease: clinical implications. Inflamm Bowel Dis. 2010;16(2):208–15.

    Article  PubMed  Google Scholar 

  18. Yuki T, Ishihara S, Rumi MA, Ortega-Cava CF, Kadowaki Y, Kazumori H, Ishimura N, Amano Y, Moriyama N, Kinoshita Y. Increased expression of midkine in the rat colon during healing of experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2006;291(4):G735–43.

    Article  PubMed  CAS  Google Scholar 

  19. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(4):1080S–6S.

    PubMed  CAS  Google Scholar 

  20. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  PubMed  CAS  Google Scholar 

  21. Van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab. 2011;25(4):671–80.

    Article  PubMed  CAS  Google Scholar 

  22. Blicher TM, Jørgensen HL, Schwarz P, Wulf HC. Low levels of vitamin D are associated with increased mortality in patients attending a University hospital in Denmark. Scand J Clin Lab Invest. 2013;73(1):24–8.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, Lappé DL, Muhlestein JB. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol. 2010;106(7):963–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sun X, Cao ZB, Zhang Y, Ishimi Y, Tabata I, Higuchi M. Association between serum 25-hydroxyvitamin D and inflammatory cytokines in healthy adults. Nutrients. 2014;6(1):221–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014;7:69–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Takeuchi Y, Matsumoto T, Ogata E, Shishiba Y. 1,25-Dihydroxyvitamin D3 inhibits synthesis and enhances degradation of proteoglycans in osteoblastic cells. J BiolChem. 1989;264(31):18407–13.

    CAS  Google Scholar 

  27. Halder SK, Osteen KG, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Repro. 2013;89(5):150.

    Article  CAS  Google Scholar 

  28. Nakanishi T, Kadomatsu K, Okamoto T, Ichihara-Tanaka K, Kojima T, Saito H, Tomoda Y, Muramatsu T. Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine. J Biochem. 1997;121:197–205.

    PubMed  CAS  Google Scholar 

  29. Cinemre H, Bilir C, Gokosmanoglu F, Kadakal F. Anti-Saccharomyces cerevisiae antibodies in acute myocardial infarction. J Investig Med. 2007;55(8):444–9.

    Article  PubMed  CAS  Google Scholar 

  30. Rinaldi M, Perricone R, Blank M, Perricone C, Shoenfeld Y. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity. Clin Rev Allerg Immunol. 2013;45(2):152–61.

    Article  CAS  Google Scholar 

  31. Bruce D, Yu S, Ooi JH, Cantorna MT. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol. 2011;23:519–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lim H, Kim YU, Sun H, Lee JH, Reynolds JM, Hanabuchi S, Wu H, Teng BB, Chung Y. Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity. 2014;40(1):153–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127:89–97.

    Article  PubMed  CAS  Google Scholar 

  34. Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Trained innate immunity and atherosclerosis. Curr Opin Lipidol. 2013;24(6):487–92.

    Article  PubMed  CAS  Google Scholar 

  35. Fengming Y, Jianbing W. Biomarkers of inflammatory bowel disease. Dis Markers. 2014;2014:710915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae and anti-neutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54(9):1232–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. da Silva Kotze LM, Nisihara RM, Nass FR, Theiss PM, Silva IG, da Rosa Utiyama SR. Anti-Saccharomyces cerevisiae antibodies in first-degree relatives of celiac disease patients. J Clin Gastroenterol. 2010;44(4):308.

    Article  PubMed  Google Scholar 

  38. Mouli VP, Ananthakrishnan AN. Vitamin D and inflammatory bowel diseases. Aliment Pharmacol Ther. 2014;39(2):125–36.

    Article  PubMed  CAS  Google Scholar 

  39. Heaney RP. What is vitamin D insufficiency and does it matter? Calcif Tissue Int. 2013;92(2):177–83.

    Article  PubMed  CAS  Google Scholar 

  40. O’Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res. 1996;56(11):2515–8.

    PubMed  Google Scholar 

  41. Krzystek-Korpacka M, Diakowska D, Neubauer K, Gamian A. Circulating midkine in malignant and non-malignant colorectal diseases. Cytokine. 2013;64(11):158–64.

    Article  PubMed  CAS  Google Scholar 

  42. Shor DB, Orbach H, Boaz M, Altman A, Anaya JM, Bizzaro N, Tincani A, Cervera R, Espinosa G, Stojanovich L, et al. Gastrointestinal-associated autoantibodies in different autoimmune diseases. Am J Clin Exp Immunol. 2012;1(1):49–55.

    PubMed  PubMed Central  Google Scholar 

  43. Müller S, Schaffer T, Flogerzi B, Seibold-Schmid B, Schnider J, Takahashi K, Darfeuille-Michaud A, Vazeille E, Schoepfer AM, Seibold F. Mannan-binding lectin deficiency results in unusual antibody production and excessive experimental colitis in response to mannose-expressing mild gut pathogens. Gut. 2010;59(11):1493–500.

    Article  PubMed  CAS  Google Scholar 

  44. Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res. 2014;114(2):379–93.

    Article  PubMed  CAS  Google Scholar 

  45. Zanetti M, Harris SS, Dawson-Hughes B. Ability of vitamin D to reduce inflammation in adults without acute illness. Nutr Rev. 2014;72(2):95–8.

    Article  PubMed  Google Scholar 

  46. Harrer M, Reinisch W, Dejaco C, Kratzer V, Gmeiner M, Miehsler W, Norman GL, Gangl A, Vogelsang H. Do high serum levels of anti-Saccharomyces cerevisiae antibodies result from a leakiness of the gut barrier in Crohn’s Disease? Eur J Gastroenterol Hepatol. 2003;15(12):1281–5.

    Article  PubMed  CAS  Google Scholar 

  47. Mouli VP, Ananthakrishnan AN. IBD serological panels: facts and perspectives. Inflamm Bowel Dis. 2007;13(12):1561–6.

    Article  Google Scholar 

  48. Tozun N, Atug O, Imeryuz N, Hamzaoglu HO, Tiftikci A, Parlak E, Dagli U, Ulker A, Hulagu S, Akpinar H, et al. Clinical characteristics of inflammatory bowel disease: a multicenter epidemiologic survey. J Clin Gastroenterol. 2009;43(1):51–7.

    Article  PubMed  Google Scholar 

  49. Granito A, Muratori L, Muratori P, Guidi M, Lenzi M, Bianchi FB, Volta U. Anti-Saccharomyces cerevisiae antibodies (ASCA) in coeliac disease. Gut. 2006;55:296.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Duzen Laboratories Group, Mecidiyekoy, Istanbul, Turkey, for serum 25-OH D3 measurements by mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Serinkan Cinemre.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to be declared and no funding has been received for the conduct of this study.

Ethical standards

This study has been ethically approved by Sakarya University School of Medicine Ethical Committee for Clinical Research with the number of 71522473.050.01.04/54, 2013.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serinkan Cinemre, F.B., Cinemre, H., Karacaer, C. et al. Midkine in vitamin D deficiency and its association with anti-Saccharomyces cerevisiae antibodies. Inflamm. Res. 65, 143–150 (2016). https://doi.org/10.1007/s00011-015-0898-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0898-6

Keywords

Navigation