Skip to main content
Log in

Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The present study aimed to comprehensively investigate the changes in oxylipins during murine sepsis induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP).

Methods

Twenty-four hours after induction of sepsis in male C57BL/6 mice by LPS or CLP, plasma and liver, lung, kidney and heart tissues were sampled. Oxylipin levels in plasma and tissue were quantified by means of LC–MS. Moreover, clinical chemistry parameters were determined in plasma and interleukin levels (MCP-1 and IL-6) were determined in kidney and liver.

Results

Elevation of liver function plasma parameters at 24 h revealed that both models were successful in the induction of sepsis. LPS induced sepsis resulted in a dramatic increase of plasma PGE2 (2,100 % change in comparison to control) and other cyclooxygenase metabolites, whereas this effect was less pronounced in CLP induced sepsis (97 % increase of PGE2). Plasma epoxy-fatty acids (FAs) and hydroxy-FAs and most of the dihydroxy-FAs were elevated in both models of sepsis. Changes of tissue oxylipin concentrations were organ dependent. Only few changes were detected in the lung and liver tissue, epoxy-FAs were elevated in the kidney. In the heart tissue a trend towards lower levels of hydroxy-FAs and epoxy-FAs was observed.

Conclusion

Both murine models of sepsis are characterized by changes of oxylipins formed in all branches of the arachidonic acid (AA) cascade. The more pronounced effects in the LPS model make this model more suitable for the investigation of the AA cascade and its pharmacological modulation in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  PubMed  CAS  Google Scholar 

  2. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B. Current epidemiology of septic shock. Am J Respir Crit Care Med. 2003;168:165–72.

    Article  PubMed  Google Scholar 

  3. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Exp Rev Anti Infect Ther. 2012;10:701–6.

    Article  CAS  Google Scholar 

  4. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4:854–65.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  PubMed  CAS  Google Scholar 

  6. Ertel W, Morrison MH, Wang P, Ba ZF, Ayala A, Chaudry IH. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin, and interleukins. Ann Surg. 1991;214:141–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu J-Y, Tsai H-J, Hwang SH, Jones PD, Morisseau C, Hammock BD. Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. Br J Pharmacol. 2009;156:284–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schmelzer KR, Kubala L, Newman JW, Kim I-H, Eiserich JP, Hammock BD. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci. 2005;102:9772–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Uozumi N, Kita Y, Shimizu T. Modulation of lipid and protein mediators of inflammation by cytosolic phospholipase a2alpha during experimental sepsis. J Immunol. 2008;181:3558–66.

    Article  PubMed  CAS  Google Scholar 

  10. Halushka PV, Reines HD, Barrow SE, Blair IA, Dollery CT, Rambo W, et al. Elevated plasma 6-keto-prostaglandin F1[alpha] in patients in septic shock. Crit Care Med. 1985;13:451–3.

    Article  PubMed  CAS  Google Scholar 

  11. Reines HD, Cook JA, Halushka PV, Wise WC, Rambo W. Plasma thromboxane concentrations are raised in patients dying with septic shock. Lancet. 1982;320:174–5.

    Article  Google Scholar 

  12. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50:S423–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ricciotti E, Fitzgerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2α from physiology to new principles in inflammation. Med Res Rev. 2007;27:435–68.

    Article  PubMed  CAS  Google Scholar 

  15. Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029.

    Article  PubMed  CAS  Google Scholar 

  16. Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, et al. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res. 2010;51:3481–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol. 2005;45:413–38.

    Article  PubMed  CAS  Google Scholar 

  19. Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866–98.

    Article  PubMed  CAS  Google Scholar 

  20. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yin H, Brooks JD, Gao L, Porter NA, Morrow JD. Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem. 2007;282:29890–901.

    Article  PubMed  CAS  Google Scholar 

  22. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005;10:10–23.

    Article  CAS  Google Scholar 

  23. Liu J-Y, Lin Y-P, Qiu H, Morisseau C, Rose TE, Hwang SH, et al. Substituted phenyl groups improve the pharmacokinetic profile and anti-inflammatory effect of urea-based soluble epoxide hydrolase inhibitors in murine models. Eur J Pharm Sci. 2013;48:619–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Meirer K, Steinhilber D, Proschak E. Inhibitors of the arachidonic acid cascade: interfering with multiple pathways. Basic Clin Pharmacol Toxicol. 2013;114:83–91.

    Article  PubMed  CAS  Google Scholar 

  25. Peri KG, Varma DR, Chemtob S. Stimulation of prostaglandin G/H synthase-2 expression by arachidonic acid monooxygenase product, 14,15-epoxyeicosatrienoic acid. FEBS Lett. 1997;416:269–72.

    Article  PubMed  CAS  Google Scholar 

  26. Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19:198–208.

    Article  PubMed  CAS  Google Scholar 

  27. Schabbauer G. Polymicrobial sepsis models: CLP versus CASP. Drug Discov Today. 2012;9:e17–21.

    Google Scholar 

  28. Kümpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park JK, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care. 2011;15:R261.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ostermann AI, Willenberg I, Schebb NH. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC–MS/MS. Anal Bioanal Chem. 2015;407:1403–14.

    Article  PubMed  CAS  Google Scholar 

  30. Willenberg I, Ostermann AI, Giovannini S, Kershaw O, von Keutz A, Steinberg P, et al. Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat. Prostaglandins Other Lipid Mediat 2015; 120:155–160.

  31. Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006.

    Article  PubMed  Google Scholar 

  32. Hosten AO. BUN and creatinine. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths; 1990.

    Google Scholar 

  33. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Investig. 2009;119:2868–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock. 2000;13:110–6.

    Article  PubMed  CAS  Google Scholar 

  36. Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol. 2005;289:F1324–32.

    Article  PubMed  CAS  Google Scholar 

  37. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.

    Article  PubMed  CAS  Google Scholar 

  38. Bitto A, Minutoli L, David A, Irrera N, Rinaldi M, Venuti F, et al. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care. 2012;16:R32.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hamaguchi K, Kuwata H, Yoshihara K, Masuda S, Shimbara S, Oh-ishi S, et al. Induction of distinct sets of secretory phospholipase A2 in rodents during inflammation. Biochim Biophys Acta. 2003;1635:37–47.

    Article  PubMed  CAS  Google Scholar 

  41. Cunningham FM, Wollard PM. 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid is a chemoattractant for human polymorphonuclear leucocytes in vitro. Prostaglandins. 1987;34:71–8.

    Article  PubMed  CAS  Google Scholar 

  42. Wiggings RE, Jafri MS, Proia AD. 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid is a more potent neutrophil chemoattractant than the 12(R) epimer in the rat cornea. Prostaglandins. 1990;40:131–41.

    Article  Google Scholar 

  43. Rossaint J, Nadler J, Ley K, Zarbock A. Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. Crit Care. 2012;16:1–15.

    Article  Google Scholar 

  44. Craciun FL, Schuller ER, Remick DG. Early enhanced local neutrophil recruitment in peritonitis-induced sepsis improves bacterial clearance and survival. J Immunol. 2010;185:6930–8.

    Article  PubMed  CAS  Google Scholar 

  45. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.

    Article  PubMed  CAS  Google Scholar 

  46. Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, et al. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2 +)-activated K + channel in renal arterioles. Am J Physiol. 1996;270:R228–37.

    PubMed  CAS  Google Scholar 

  47. Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos Biol Fate Chem. 2011;39:22–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kubala L, Schmelzer KR, Klinke A, Kolarova H, Baldus S, Hammock BD, et al. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation. Free Radic Biol Med. 2010;48:1311–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53:37–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sprecher H, VanRollins M, Sun F, Wyche A, Needleman P. Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney. J Biol Chem. 1982;257:3912–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by Fonds der Chemischen Industrie, the European Union (Marie Curie Career Integration Grant CIG 293536) and the German Research Foundation (Grant SCHE 1801). We thank Martina Ackermann and Herle Chlebusch for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Helge Schebb.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Information (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willenberg, I., Rund, K., Rong, S. et al. Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis. Inflamm. Res. 65, 133–142 (2016). https://doi.org/10.1007/s00011-015-0897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0897-7

Keywords

Navigation