Skip to main content

Advertisement

Log in

Folate receptor expression on murine and human adipose tissue macrophages

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Adipose tissue macrophages (ATMs) have been implicated in a number of obesity-related diseases. Because the activated macrophages associated with many types of autoimmune and inflammatory diseases express a folate receptor (FR) that can be exploited for FR-targeted drug delivery, we examined the visceral adipose tissue of obese mice and humans to determine whether ATMs also express FR that are accessible by folate conjugates.

Material or subjects

C57BL/6 or FATSO mice fed on either a low- or high-fat diet were used in murine studies. Human adipose tissue were obtained from healthy volunteers during adipose reduction surgery.

Methods

Visceral adipose tissue was collected from both obese mice and humans, collagenase digested, and stained with folate-Oregon Green and antibodies for macrophage markers including F4/80, mannose receptor (CD206), CD11b, and CD11c. Cells were then examined for expression of the above markers by flow cytometry. Furthermore, the ability of folate conjugates to target the FR-expressing ATMs in obese mice was evaluated in vivo.

Results

A subset of the ATMs harvested from obese mice were found to express FR. Subpopulations of ATMs also simultaneously express both pro- and anti-inflammatory markers, and FR is expressed on both subsets. We then demonstrate that FR-expressing ATMs can be targeted with folate-linked fluorescent dyes in vivo.

Conclusions

FR are expressed on multiple subsets of ATMs and these subsets can be targeted with folate-linked drugs, allowing for the possible development of FR-targeted therapies for obesity-related inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006;37(3):208–22.

    Article  CAS  PubMed  Google Scholar 

  2. Grip O, Janciauskiene S, Lindgren S. Macrophages in inflammatory bowel disease. Curr Drug Targets Inflamm Allergy. 2003;2(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  3. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2(3):189–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Invest. 2006;116(8):2105–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zissel G, Prasse A, Muller-Quernheim J. Sarcoidosis–immunopathogenetic concepts. Semin Respir Crit Care Med. 2007;28(1):3–14.

    Article  PubMed  Google Scholar 

  6. Ding C, Cicuttini F, Li J, Jones G. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opin Investig Drugs. 2009;18(10):1457–66.

    Article  CAS  PubMed  Google Scholar 

  7. LaDuca JR, Gaspari AA. Targeting tumor necrosis factor alpha. New drugs used to modulate inflammatory diseases. Dermatol Clin. 2001;19(4):617–35.

    Article  CAS  PubMed  Google Scholar 

  8. Murdaca G, Colombo BM, Puppo F. Anti-TNF-alpha inhibitors: a new therapeutic approach for inflammatory immune-mediated diseases: an update upon efficacy and adverse events. Int J Immunopathol Pharmacol. 2009;22(3):557–65.

    CAS  PubMed  Google Scholar 

  9. Romsing J, Moiniche S. A systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain. Acta Anaesthesiol Scand. 2004;48(5):525–46.

    Article  CAS  PubMed  Google Scholar 

  10. Chung SA, Jeon BK, Choi YH, Back KO, Lee JB, Kook KH. Pirfenidone attenuates the IL-1beta-induced hyaluronic acid increase in orbital fibroblasts from patients with thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55(4):2276–83.

    Article  CAS  PubMed  Google Scholar 

  11. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  12. Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009;113(2):438–46. doi:10.1182/blood-2008-04-150789.

    Article  CAS  PubMed  Google Scholar 

  13. Nakashima-Matsushita N, Homma T, Yu S, Matsuda T, Sunahara N, Nakamura T, et al. Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1999;42(8):1609–16.

    Article  CAS  PubMed  Google Scholar 

  14. van der Heijden JW, Oerlemans R, Dijkmans BA, Qi H, van der Laken CJ, Lems WF, et al. Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum. 2009;60(1):12–21.

    Article  PubMed  Google Scholar 

  15. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol. 2008;181(6):3733–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cho M, Hunt TK, Hussain MZ. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol. 2001;280(5):H2357–63.

    CAS  PubMed  Google Scholar 

  17. Gan Y, Herzog EL, Gomer RH. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Clin Risk Manag. 2011;7:39–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Henke C, Marineili W, Jessurun J, Fox J, Harms D, Peterson M, et al. Macrophage production of basic fibroblast growth factor in the fibroproliferative disorder of alveolar fibrosis after lung injury. Am J Pathol. 1993;143(4):1189–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Brune B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. Faseb J. 2007;21(11):2704–12.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  21. Vignola AM, Chanez P, Chiappara G, Merendino A, Zinnanti E, Bousquet J, et al. Release of transforming growth factor-beta (TGF-beta) and fibronectin by alveolar macrophages in airway diseases. Clin Exp Immunol. 1996;106(1):114–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F, et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res. 2009;69(24):9395–403.

    Article  PubMed  Google Scholar 

  23. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86.

    Article  CAS  PubMed  Google Scholar 

  24. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM. Increased macrophage migration into adipose tissue in obese mice. Diabetes. 2012;61(2):346–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554–61.

    Article  CAS  PubMed  Google Scholar 

  26. Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008;14(12):1225–30.

    Article  CAS  PubMed  Google Scholar 

  27. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17(4):332–41.

    Article  CAS  PubMed  Google Scholar 

  29. Harford KA, Reynolds CM, McGillicuddy FC, Roche HM. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue. Proc Nutr Soc. 2011;70(4):408–17.

    Article  CAS  PubMed  Google Scholar 

  30. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  31. Olefsky JM, Glass CK. Macrophages, Inflammation, and Insulin Resistance. Annu Rev Physiol. 2010;72(1):219–46. doi:10.1146/annurev-physiol-021909-135846.

    Article  CAS  PubMed  Google Scholar 

  32. Tesch GH. Role of macrophages in complications of type 2 diabetes. Clin Exp Pharmacol Physiol. 2007;34(10):1016–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  34. Lesser GT, Deutsch S. Measurement of adipose tissue blood flow and perfusion in man by uptake of 85Kr. J Appl Physiol. 1967;23(5):621–30.

    CAS  PubMed  Google Scholar 

  35. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol. 2003;14(6):561–6.

    Article  CAS  PubMed  Google Scholar 

  36. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  38. Ayala-Lopez W, Xia W, Varghese B, Low PS. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages. J Nucl. 2010;51(5):768–74. doi:10.2967/jnumed.109.071324.

    Article  Google Scholar 

  39. Paulos CM, Varghese B, Widmer WR, Breur GJ, Vlashi E, Low PS. Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis. Arthritis Res Ther. 2006;8(3):28.

    Article  Google Scholar 

  40. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuneyoshi Y, Tanaka M, Nagai T, Sunahara N, Matsuda T, Sonoda T, et al. Functional folate receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression profiles. Scand J Rheumatol. 2012;41(2):132–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Endocyte Inc. (West Lafayette, IN) for generous financial support, for the gift of folate-targeted 99mTc (EC20), folate-FITC (EC17), folate-Oregon Green, and folate-Alexa Fluor 647 used in the experiments, and helpful conversations regarding experimental design. We are extremely grateful to the physicians at Baldwin Plastic Surgery Center, Lafayette, IN for providing the human adipose tissue samples analyzed in the reported studies. Furthermore, we thank Dr. Chris V. Galliford for his help with preparing this manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Low.

Additional information

Responsible Editor: Bernhard Gibbs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, M.J., Achini Bandara, N. & Low, P.S. Folate receptor expression on murine and human adipose tissue macrophages. Inflamm. Res. 64, 697–706 (2015). https://doi.org/10.1007/s00011-015-0849-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0849-2

Keywords

Navigation