Skip to main content
Log in

Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The activation of proteinase-activated receptors (PARs) has been implicated in the development of important hallmarks of inflammation, including in vivo leukocyte recruitment; however, its role in the regulation of leukocyte migration in response to inflammatory stimuli has not been elucidated until now. Here, we examined the effects of the PAR4 antagonist YPGKF-NH 2 (tcY-NH2) on neutrophil recruitment in experimentally induced inflammation.

Methods

BALB/c mice were intrapleurally injected with tcY-NH2 (40 ng/kg) prior to intrapleural injection of carrageenan (Cg) or neutrophil chemoattractant CXCL8; the number of infiltrating neutrophils was evaluated after 4 h, and KC production was assessed at different times after Cg injection. Neutrophil adhesion and rolling cells were studied using a brain circulation preparation 4 h after the Cg or CXCL8 challenge in tcY-NH2-treated mice.

Results

PAR4 blockade inhibited CXCL8- and Cg-induced neutrophil migration into the pleural cavity of BALB/c mice and reduced neutrophil rolling and adherence. Surprisingly, PAR4 blockade increased the level of KC in response to carrageenan.

Conclusion

These results demonstrated that PAR4 blockade impairs neutrophil migration in vivo, suggesting that PAR4 plays an important role in the regulation of inflammation, at least in part because of its ability to inhibit the actions of the neutrophil chemoattractant CXCL8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobayashi SD, DeLeo FR. Role of neutrophils in innate immunity: a systems biologylevel approach. Wiley Interdiscip Rev Syst Biol Med. 2009;1:309–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320:365–76.

    Article  PubMed  CAS  Google Scholar 

  3. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5:1317–27.

    Article  PubMed  CAS  Google Scholar 

  4. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62:726–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–28.

    Article  PubMed  CAS  Google Scholar 

  6. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101.

    Article  PubMed  CAS  Google Scholar 

  7. Peng Q, Li K, Sacks SH, Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets. 2009;8:236–46.

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008;13:2400–7.

    Article  PubMed  CAS  Google Scholar 

  9. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983;220:568–75.

    Article  PubMed  CAS  Google Scholar 

  10. Hollenberg MD, Compton SJ. International Union of Pharmacology XXVIII Proteinase-activated receptors. Pharmacol Rev. 2002;54:203–17.

    Article  PubMed  CAS  Google Scholar 

  11. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    Article  PubMed  CAS  Google Scholar 

  12. Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol. 2008;153(suppl 1):S263–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Vergnolle N, Derian CK, D’Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol. 2002;169:1467–73.

    Article  PubMed  CAS  Google Scholar 

  14. Vergnolle N. Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther. 2009;123:292–309.

    Article  PubMed  CAS  Google Scholar 

  15. Cottrell GS, Amadesi S, Grady EF, Bunnett NW. Trypsin IV, a novel agonist of proteaseactivated receptors 2 and 4. J Biol Chem. 2004;279:13532–9.

    Article  PubMed  CAS  Google Scholar 

  16. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW, Diamandis EP, Hollenberg MD. Proteinase-activated receptors (PARs), targets for kallikrein signalling. J Biol Chem. 2006;281:32095–112.

    Article  PubMed  CAS  Google Scholar 

  17. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000;275:6819–23.

    Article  PubMed  CAS  Google Scholar 

  18. Kataoka H, Hamilton JR, McKemy DD, Camerer E, Zheng YW, Cheng A, Griffin C, Coughlin SR. Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood. 2003;102:3224–31.

    Article  PubMed  CAS  Google Scholar 

  19. McDougall JJ, Zhang C, Cellars L, Joubert E, Dixon CM, Vergnolle N. Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum. 2009;60:728–37.

    Article  PubMed  CAS  Google Scholar 

  20. Slofstra SH, Bijlsma MF, Groot AP, Reitsma PH, Lindhout T, ten Cate H, Spek CA. Protease- activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood. 2007;110:3176–82.

    Article  PubMed  CAS  Google Scholar 

  21. Gomides LF, Duarte ID, Ferreira RG, Perez AC, Francischi JN, Klein A. Proteinase-activated receptor-4 plays a major role in the recruitment of neutrophils induced by trypsin or carrageenan during pleurisy in mice. Pharmacology. 2012;. doi:10.1159/000337378.

    PubMed  Google Scholar 

  22. Ferreira RG, Matsui TC, Godin AM, Gomides LF, Pereira-Silva PE, Duarte ID, Menezes GB, Coelho MM, Klein A. Neutrophil recruitment is inhibited by nicotinamide in experimental pleurisy in mice. Eur J Pharmacol. 2012;. doi:10.1016/j.ejphar.2012.04.014.

    Google Scholar 

  23. Carvalho-Tavares J, Hickey MJ, Hutchison J, Michaud J, Sutcliffe IT, Kubes P. A role for platelets and endothelial selectins in tumor necrosis factor-alpha-induced leukocyte recruitment in the brain microvasculature. Circ Res. 2000;87:1141–8.

    Article  PubMed  CAS  Google Scholar 

  24. Bhattacharyya S, Gill R, Chen ML, Zhang F, Linhardt RJ, Dudeja PK, Tobacman JK. Toll-like receptor 4 mediates induction of the Bcl10-NFkappaB-interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem. 2008;. doi:10.1074/jbc.M708833200.

    PubMed Central  Google Scholar 

  25. Braga AD, Miranda JP, Ferreira GM, Bilheiro RP, Duarte ID, Francischi JN, Klein A. Blockade of proteinase-activated receptor-4 inhibits the eosinophil recruitment induced by eotaxin-1 in the pleural cavity of mice. Pharmacology. 2010;86:224–30.

    Article  PubMed  CAS  Google Scholar 

  26. Chen D, Carpenter A, Abrahams J, Chambers RC, Lechler RI, McVey JH, Dorling AJ. Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J Exp Med. 2008;205:1739–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Byrum RS, Goulet JL, Snouwaert JN, Griffiths RJ, Koller BH. Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase- and leukotriene A4 hydrolase-deficient mice. J Immunol. 1999;163:6810–9.

    PubMed  CAS  Google Scholar 

  28. Seo SM, McIntire LV, Smith CW. Effects of IL-8, Gro-alpha, and LTB(4) on the adhesive kinetics of LFA-1 and Mac-1 on human neutrophils. Am J Physiol Cell Physiol. 2001;281(C1):568–78.

    Google Scholar 

  29. Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol. 1999;66:401–10.

    PubMed  CAS  Google Scholar 

  30. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu TA. G-protein-coupled receptor for leukotriene B4 that mediates chemo-taxis. Nature. 1997;387:620–4.

    Article  PubMed  CAS  Google Scholar 

  31. Matos NA, Silva JF, Matsui TC, Damasceno KA, Duarte ID, Lemos VS, Cassali GD, Klein A. Mast cell tryptase induces eosinophil recruitment in the pleural cavity of mice via proteinase-activated receptor 2. Inflammation. 2013;. doi:10.1007/s10753-013-9664-5.

    PubMed  Google Scholar 

  32. Sjoukje H, Slofstra SH, Bijlsma MF, Groot AP, Reitsma PH, Lindhout T, Cate HT, Spek CA. Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood. 2007;110:3176–82.

    Article  Google Scholar 

  33. Houle S, Papez MD, Ferazzini M, Hollenberg MD, Vergnolle N. Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. Br J Pharmacol. 2005;146:670–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Raychaudhuri A, Chertock H, Chovan J, Jones LS, Kimble EF, Kowalski TJ, Peppard J, White DH, Satoh Y, Roland D. Inhibition of LTB4 biosynthesis in situ by CGS 23885, a potent 5-lipoxygenase inhibitor, correlates with its pleural fluid concentrations in an experimentally induced rat pleurisy model. Naunyn Schmiedebergs Arch Pharmacol. 1997;355:470–4.

    Article  PubMed  CAS  Google Scholar 

  35. Mathieu J, Tissot M, Nolibe D, Florentin I, Kergonou JF, Giroud JP. Local and systemic effects of an acute inflammation on eicosanoid generation capacity of polymorphonuclear cells and macrophages. Int J Exp Pathol. 1990;71:603–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Liu L, Kubes P. Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action. Thromb Haemost. 2003;89(2):213–20.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Pesquisa e Desenvolvimento (CNPq)/Brazil and Pró-reitoria de Pesquisa (Prpq/Universidade Federal de Minas Gerais/Brazil). L.F.G, O.C.O.L., N.A.M. and K.M.F. are graduate student fellows from CNPq and FAPEMIG/Brazil. J.N.F. is a senior fellow from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Klein.

Additional information

Responsible Editor: Jason J. McDougall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomides, L.F., Lima, O.C.O., Matos, N.A. et al. Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice. Inflamm. Res. 63, 935–941 (2014). https://doi.org/10.1007/s00011-014-0767-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0767-8

Keywords

Navigation