Skip to main content
Log in

On a polygonal mean value property

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We give a characterization of continuous functions in a complex plane domain satisfying a weighted polygonal mean value property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on Functional Equations and Their Applications. Academic Press, New York (1966)

    MATH  Google Scholar 

  2. Beckenbach, E.F., Reade, M.: Mean-values and harmonic polynomials. Trans. Am. Math. Soc. 53, 230–238 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckenbach, E.F., Reade, M.: Regular solids and harmonic polynomials. Duke Math. J. 12, 629–644 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  4. Flatto, L.: Functions with a mean value property. J. Math. Mech. 10, 11–18 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Flatto, L.: Functions with a mean value property II. Am. J. Math. 85, 248–270 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, A.: Mean-values and polyharmonic polynomials. Michigan Math. J. 4, 67–74 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman, A., Littman, W.: Functions satisfying the mean-value property. Trans. Am. Math. Soc. 102, 167–180 (1962)

    MATH  Google Scholar 

  8. Iwasaki, K.: Triangle mean value property. Aequationes Math. 57, 206–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwasaki, K.: Polytops and the mean value property. Discrete Comput. Geom. 17, 163–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwasaki, K.: Recent progress in polyhedral harmonics. Acta Appl. Math. 60, 179–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality. Birkhüser, Basel (2009)

    Book  MATH  Google Scholar 

  12. Mead, D.G.: Newton’s identities. Am. Math. Mon. 99, 749–751 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Walsh, J.L.: A mean value theorem for polynomials and harmonic polynomials. Bull. Am. Math. Soc. 42, 923–930 (1936)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for pointing out some inaccuracies in the previous statement of Theorem 2.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Łysik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łysik, G. On a polygonal mean value property. Aequat. Math. 96, 1249–1258 (2022). https://doi.org/10.1007/s00010-022-00882-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-022-00882-6

Keywords

Mathematics Subject Classification

Navigation