Skip to main content
Log in

Observability of Time-Varying Fractional Dynamical Systems with Caputo Fractional Derivative

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Modeling dynamical systems with real-life data having time-dependent disturbances is better captured with time-varying systems. The qualitative properties of such a system in a fractional sense are hardly examined. Observability is one property where the system’s initial states are determined based on the output of some observation system. In this paper, we investigate the observability of time-varying fractional dynamical systems. A state-transition matrix represents the solution of the time-varying fractional dynamical systems. The observability results of linear and nonlinear systems are obtained using the Gramian matrix technique and the Banach contraction mapping theorem respectively. The obtained theoretical results for the observability of the time-varying fractional dynamical systems are compared with those of the time-invariant fractional dynamical system (FDS). Several numerical examples are provided to validate the theoretical results. Also, a numerical example to study the observability of a fractional spring–mass system is provided to verify the applicability of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used in this research are available/mentioned within the manuscript.

References

  1. Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A., Nouri, K.: Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study. Chaos Solitons Fractals 166, 112990 (2023)

    Article  MathSciNet  Google Scholar 

  2. Derbazi, C., Baitiche, Z., Feckan, M.: Some new uniqueness and Ulam stability results for a class of multi-terms fractional differential equations in the framework of generalized Caputo fractional derivative using the \(\Phi \)-fractional Bielecki-type norm. Turk. J. Math. 45(5), 2307–2322 (2021)

    Article  Google Scholar 

  3. Sivalingam, S.M., Kumar, P., Govindaraj, V.: A novel optimization-based physics-informed neural network scheme for solving fractional differential equations. Eng. Comput., 1–11 (2023)

  4. Kumar, P., Vellappandi, M., Khan, Z.A., Sivalingam, S.M., Kaziboni, A., Govindaraj, V.: A case study of monkeypox disease in the United States using mathematical modeling with real data. Math. Comput. Simul. 213, 444–465 (2023)

    Article  MathSciNet  Google Scholar 

  5. Derbazi, C., Baitiche, Z.: Uniqueness and Ulam–Hyers–Mittag–Leffler stability results for the delayed fractional multiterm differential equation involving the \(\psi \)-Caputo fractional derivative. Rocky Mt. J. Math. 52(3), 887–897 (2022)

    Article  MathSciNet  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    Google Scholar 

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  9. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Relat. Fields 7(4), 537 (2017)

    Article  MathSciNet  Google Scholar 

  10. Sivalingam, S.M., Kumar, P., Govindaraj, V.: The hybrid average subtraction and standard deviation based optimizer. Adv. Eng. Softw. 176, 103387 (2023)

    Article  Google Scholar 

  11. Govindaraj, V., Priyadharsini, S., Kumar, P.S., Balachandran, K.: Asymptotic stability of fractional Langevin systems. J. Appl. Nonlinear Dyn. 11(03), 635–650 (2022)

    Article  MathSciNet  Google Scholar 

  12. Sivalingam, S.M., Kumar, P., Govindaraj, V.: A neural networks-based numerical method for the generalized Caputo-type fractional differential equations. Math. Comput. Simul. 213, 302–323 (2023)

    Article  MathSciNet  Google Scholar 

  13. Sivalingam, S.M., Kumar, P., Govindaraj, V.: A novel numerical scheme for fractional differential equations using extreme learning machine. Physica A Stat. Mech. Appl. 622, 128887 (2023)

    Article  MathSciNet  Google Scholar 

  14. Balachandran, K., Govindaraj, V., Ortigueira, M.D., Rivero, M., Trujillo, J.J.: Observability and controllability of fractional linear dynamical systems. IFAC Proc. Vol. 46(1), 893–898 (2013)

    Article  Google Scholar 

  15. Govindaraj, V., George, R.K.: Functional approach to observability and controllability of linear fractional dynamical systems. J. Dyn. Syst. Geom. Theor. 15(2), 111–129 (2017)

    MathSciNet  Google Scholar 

  16. Balachandran, K., Govindaraj, V., Rivero, M., Tenreiro Machado, J.A., Trujillo, J.J.: Observability of nonlinear fractional dynamical systems. In: Abstract and Applied Analysis, vol. 2013. Hindawi (2013)

  17. Sadek, L.: Controllability and observability for fractal linear dynamical systems. J. Vib. Control 29, 4730–4740 (2022)

    Article  MathSciNet  Google Scholar 

  18. Al-Zhour, Z.: Controllability and observability behaviors of a non-homogeneous conformable fractional dynamical system compatible with some electrical applications. Alex. Eng. J. 61(2), 1055–1067 (2022)

    Article  MathSciNet  Google Scholar 

  19. Zhang, H., Ahmad, I., Rahman, G., Ahmad, S.: Investigation for Existence. Controllability and Observability of a Fractional order Delay Dynamical System. Authorea Preprints (2022)

  20. Sadek, L., Abouzaid, B., Sadek, E.M., Alaoui, H.T.: Controllability, observability and fractional linear-quadratic problem for fractional linear systems with conformable fractional derivatives and some applications. Int. J. Dyn. Control 11(1), 214–228 (2023)

    Article  MathSciNet  Google Scholar 

  21. Vellappandi, M., Govindaraj, V.: Operator theoretic approach to optimal control problems characterized by the Caputo fractional differential equations. Results Control Optim. 10, 100194 (2023)

    Article  Google Scholar 

  22. Vellappandi, M., Govindaraj, V.: Observability, reachability, trajectory reachability and optimal reachability of fractional dynamical systems using Riemann–Liouville fractional derivative. In: Fixed Point Theory and Fractional Calculus: Recent Advances and Applications, pp. 245–260. Springer Nature, Singapore (2022)

  23. Ghanem, R., Romeo, F.: A wavelet-based approach for the identification of linear time-varying dynamical systems. J. Sound Vib. 234(4), 555–576 (2000)

    Article  ADS  Google Scholar 

  24. Grillenzoni, C.: Modeling time-varying dynamical systems. J. Am. Stat. Assoc. 85(410), 499–507 (1990)

    Article  Google Scholar 

  25. Shi, Y., Chen, G.: Chaos of time-varying discrete dynamical systems. J. Differ. Equ. Appl. 15(5), 429–449 (2009)

    Article  MathSciNet  Google Scholar 

  26. Haddad, W.M., Nersesov, S.G., Du, L.: Finite-time stability for time-varying nonlinear dynamical systems. In: 2008 American Control Conference, pp. 4135–4139. IEEE (2008)

  27. Mehrkanoon, S., Falck, T., Suykens, J.A.: Parameter estimation for time varying dynamical systems using least squares support vector machines. IFAC Proc. Vol. 45(16), 1300–1305 (2012)

    Article  Google Scholar 

  28. Minasyan, E., Gradu, P., Simchowitz, M., Hazan, E.: Online control of unknown time-varying dynamical systems. Adv. Neural Inf. Process. Syst. 34, 15934–15945 (2021)

    Google Scholar 

  29. Soltani, M., Singh, A.: Moment analysis of linear time-varying dynamical systems with renewal transitions. SIAM J. Control Optim. 57(4), 2660–2685 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yang, R., Lai, Y.C., Grebogi, C.: Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems? Chaos 22(3), 033119 (2012)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  31. Klamka, J., Niezabitowski, M.: Controllability of the fractional discrete linear time-varying infinite-dimensional systems. AIP Conf. Proc. 1738(1), 130004 (2016)

    Article  Google Scholar 

  32. Binias, B., Czyba, R., Grzejszczak, T., Janusz, W., Jurgaś, P., Łegowski, A., et al.: Controllability of positive discrete time-varying fractional systems with constant delay. In: 2016 17th International Carpathian Control Conference (ICCC), pp. 66–69. IEEE (2016)

  33. Babiarz, A.: Controllability and observability of discrete time-varying fractional systems with delays. In: 2016 17th International Carpathian Control Conference (ICCC), pp. 7–11. IEEE (2016)

  34. Babiarz, A.: Local controllability of discrete semilinear time-varying fractional order systems with constant delay. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 13–18. IEEE (2018)

  35. Sanz, R., Garcia, P., Krstic, M.: Observation and stabilization of LTV systems with time-varying measurement delay. Automatica 103, 573–579 (2019)

    Article  MathSciNet  Google Scholar 

  36. Kaczorek, T., Borawski, K.: Positivity and stability of time-varying fractional discrete-time linear systems. Meas. Autom. Monit. 61(3), 84–87 (2015)

    Google Scholar 

  37. Kaczorek, T.: Positive time-varying continuous-time linear systems and electrical circuits. Bull. Pol. Acad. Sci. Tech. Sci. 63(4) (2015)

  38. Kaczorek, T.: Fractional positive and stable time-varying continuous-time linear electrical circuits. In: Proceedings of the European Modeling and Simulation Symposium, pp. 18–23 (2017)

  39. Kaczorek, T., Borawski, K.: A computer algorithm for the solution of the Astate equation for time-varying fractional discrete-time linear systems. Meas. Autom. Monit. 61(1), 2–4 (2015)

    Google Scholar 

  40. Babiarz, A., Banshchikova, I., Czornik, A., Makarov, E., Niezabitowski, M., Popova, S.: On assignability of Lyapunov spectrum of discrete linear time-varying system with control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 697–701. IEEE (2016)

  41. Kaczorek, T.: Minimum energy control of positive time-varying linear systems. Acta Mech. Autom. 9(4), 225–228 (2015)

    Google Scholar 

  42. Huang, S., Zhang, R., Chen, D.: Stability of nonlinear fractional-order time varying systems. J. Comput. Nonlinear Dyn. 11(3), 031007 (2016)

    Article  Google Scholar 

  43. Chen, G., Yang, Y.: Robust finite-time stability of fractional order linear time-varying impulsive systems. Circuits Syst. Signal Process. 34, 1325–1341 (2015)

    Article  MathSciNet  Google Scholar 

  44. Huang, Y., Wang, D., Zhang, J., Guo, F.: Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system. PLoS One 13(3), e0194112 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pinto, C.M., Carvalho, A.R.: Fractional dynamics of an infection model with time-varying drug exposure. J. Comput. Nonlinear Dyn. 13(9), 090904 (2018)

    Article  Google Scholar 

  46. Bourdin, L.: Cauchy–Lipschitz theory for fractional multi-order dynamics: state-transition matrices, Duhamel formulas and duality theorems (2018)

  47. Sivalingam, S.M., Govindaraj, V.: A novel numerical approach for time-varying impulsive fractional differential equations using theory of functional connections and neural network. Expert Syst. Appl. 238, 121750 (2023)

    Google Scholar 

  48. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Krieger Publishing Co., Inc. (1986)

  49. Müller, P.C., Weber, H.I.: Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica 8(3), 237–246 (1972)

    Article  MathSciNet  Google Scholar 

  50. Basile, G., Marro, G.: On the observability of linear, time-invariant systems with unknown inputs. J. Optim. Theory Appl. 3, 410–415 (1969)

    Article  MathSciNet  Google Scholar 

  51. Ambrosini, D., Cuitiño, G., Rebeco, J.: Eficiencia De Amortiguadores De Masa Sintonizados En Estructuras Sismorresistentes. Mecánica computacional, pp. 447–462 (2004)

  52. Rosales, M.B., Filipich, C.P., Escalante, M.R.: Dinámica De Una Estructura Flotante Amarrada: Modelado De La No Linealidad Mediante Recurrencias Algebraicas. Mecánica Computacional, pp. 1051–1063 (2003)

  53. Escalante-Martínez, J.E., Gómez-Aguilar, J.F., Calderon-Ramon, C., Morales-Mendoza, L.J., Cruz-Orduna, I., Laguna-Camacho, J.R.: Experimental evaluation of viscous damping coefficient in the fractional underdamped oscillator. Adv. Mech. Eng. 8(4), 1687814016643068 (2016)

    Article  Google Scholar 

  54. Brommundt, M., Muskulus, M., Strach, M., Strobel, M., Vorpahl, F.: Experiences with object-oriented and equation based modeling of a floating support structure for wind turbines in Modelica. In: Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1–12. IEEE (2012)

  55. Balachandran, K., Dauer, J.P.: Elements of Control Theory. Alpha Science International (2012)

  56. Webb, J.: Initial value problems for Caputo fractional equations with singular nonlinearities (2019)

  57. Torres Ledesma, C.E., Nyamoradi, N.: \((k, \psi )\)-Hilfer variational problem. J. Ellipt. Parabol. Equ. 8(2), 681–709 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S M Sivalingam received the financial support of UGC NFOBC Ph.D. Fellowship, India (Ref. 202122-TN13000109). V Govindaraj would like to thank the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India, for funding the research project (File No. 02011/18/2023 NBHM (R.P)/ R &D II/5952).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

S M Sivalingam: conceptualization, visualization, software, resources, formal analysis, investigation, writing—original draft, and visualization. V Govindaraj: supervision, investigation, formal analysis, resources, writing—review and editing.

Corresponding author

Correspondence to S M Sivalingam.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivalingam, S.M., Govindaraj, V. Observability of Time-Varying Fractional Dynamical Systems with Caputo Fractional Derivative. Mediterr. J. Math. 21, 76 (2024). https://doi.org/10.1007/s00009-024-02615-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-024-02615-2

Keywords

Mathematics Subject Classification

Navigation