Skip to main content
Log in

On Global Solution for a Class of p(x)-Laplacian Equations with Logarithmic Nonlinearity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of p(x)-Laplacian equations with logarithmic source terms. Using the potential well method combined with the Nehari manifold, we prove some results on the global existence and blow-up of weak solutions in the subcritical case. Moreover, we also obtain decay estimates for the global weak solutions. Otherwise, we give an upper bound for the maximal existence time of the blow-up weak solutions under different levels of initial energy. The main difficulties here not only come from the usual difficulties in variable exponent spaces but also from the sign-changing property of the logarithmic function. Our results improve (Boudjeriou in J Elliptic Parabol Equ 6:773–794 2020) and fill the gaps in Liu et al. (Nonlinear Anal Real World Appl 64:103449, 2022). Notice that the methods here are different from Boudjeriou (2020) and can be used to extend (Zeng et al. in J Nonlinear Math Phys 29:41–57, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56, 874–882 (2008)

    Article  MathSciNet  Google Scholar 

  2. Antontsev, S., Rodrigues, J.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bollt, E., Chartrand, R., Esedo\(\bar{\text{g}}\)lu, S., Schultz, P., Vixie, K.: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 31(1–3), 61–85 (2009)

  4. Boudjeriou, T.: Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity. Mediterr. J. Math. 17, 162 (2020)

    Article  MathSciNet  Google Scholar 

  5. Boudjeriou, T.: On the diffusion \(p(x)\)-Laplacian with logarithmic nonlinearity. J. Elliptic Parabol. Equ. 6, 773–794 (2020)

    Article  MathSciNet  Google Scholar 

  6. Cao, Y., Liu, C.H.: Initial boundary value problem for a mixed pseudoparabolic p-Laplacian type equation with logarithmic nonlinearity. Electron. J. Differ. Equ. 116(2018), 1–19 (2018)

    Google Scholar 

  7. Chen, H., Luo, P., Liu, G.: Global solution and blow up of a semilinear heat equation with logarithmic nonlinearity. J. Math. Anal. Appl. 422(1), 84–98 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  9. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Heidelberg (2011)

    Book  Google Scholar 

  10. Ding, H., Zhou, J.: Global existence and blow-up for a mixed pseudoparabolic \(p\)-Laplacian type equation with logarithmic nonlinearity. J. Math. Anal. Appl. 2(478), 393–420 (2019)

    Article  Google Scholar 

  11. Ding, H., Zhou, J.: Global existence and blow-up for a mixed pseudo-parabolic \(p\)-Laplacian type equation with logarithmic nonlinearity-II. Appl. Anal. 100, 2641–2658 (2019)

    Article  MathSciNet  Google Scholar 

  12. Edmunds, D.E., Rákosník, J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  13. Edmunds, D.E., Rákosník, J.: Sobolev embeddings with variable exponent II. Math. Nachr. 246(247), 53–67 (2002)

    Article  MathSciNet  Google Scholar 

  14. Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}\left(\Omega \right)\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  Google Scholar 

  15. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41, 592–618 (1991)

    Article  MathSciNet  Google Scholar 

  16. Li, F., Li, Z., Pi, L.: Variable exponent functionals in image restoration. Appl. Math. Comput. 216(3), 870–882 (2010)

    MathSciNet  Google Scholar 

  17. Li, P.P., Liu, C.C.: A class of fourth-order parabolic equation with logarithmic nonlinearity. J. Inequal. Appl. 2018, 328 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, B., Zhang, M., Li, F.: Singular properties of solutions for a parabolic equation with variable exponents and logarithmic source. Nonlinear Anal. Real World Appl. 64, 103449 (2022)

    Article  MathSciNet  Google Scholar 

  19. Nhan, L.C., Chuong, Q.V., Truong, L.X.: Potential well method for \(p(x)\)-Laplacian equations with variable exponent sources. Nonlinear Anal. Real World Appl. 56, 103155 (2020)

    Article  MathSciNet  Google Scholar 

  20. Nhan, L.C., Truong, L.X.: Existence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearity. Electron. J. Qual. Theory Differ. Equ. 67, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  21. Nhan, L.C., Truong, L.X.: Global solution and blow-up for a class of \(p\)-Laplacian evolution equations with logarithmic nonlinearity. Acta Appl. Math. 151, 149–169 (2017)

    Article  MathSciNet  Google Scholar 

  22. Payne, L.E., Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22, 273–303 (1975)

    Article  MathSciNet  Google Scholar 

  23. Rajagopal, K., Růžička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  Google Scholar 

  24. Rajagopal, K., Růžička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401–407 (1996)

    Article  Google Scholar 

  25. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    Book  Google Scholar 

  26. Sattinger, D.H.: On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 30(2), 148–172 (1968)

    Article  MathSciNet  Google Scholar 

  27. Wineman, A., Rajagopal, K.: On constitutive equations for electrorheological materials. Contin. Mech. Thermodyn. 7, 1–22 (1995)

    Article  MathSciNet  Google Scholar 

  28. Zeng, F., Deng, Q., Wang, D.: Global existence and blow-up for the pseudo-parabolic \(p(x)\)-Laplacian equation with logarithmic nonlinearity. J. Nonlinear Math. Phys. 29, 41–57 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (Quach Van Chuong) is supported by Dong Nai University (DNU), Vietnam. The second author (Le Cong Nhan) is supported by Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam. The third author (Le Xuan Truong) is supported by University of Economics Ho Chi Minh City (UEH), Vietnam.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Le Cong Nhan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Chuong, Q., Nhan, L.C. & Truong, L.X. On Global Solution for a Class of p(x)-Laplacian Equations with Logarithmic Nonlinearity. Mediterr. J. Math. 21, 64 (2024). https://doi.org/10.1007/s00009-024-02604-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-024-02604-5

Keywords

Mathematics Subject Classification

Navigation