Skip to main content
Log in

Bi-space Global Attractors for a Class of Second-Order Evolution Equations with Dispersive and Dissipative Terms in Locally Uniform Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the asymptotic behavior of a class of second-order evolution equations with dispersive and dissipative terms’ critical nonlinearity in locally uniform spaces. First of all, we prove the global well-posedness of solutions to the evolution equations in the locally uniform spaces \(H^{1}_{\textrm{lu}}({{\mathbb {R}}}^N)\times H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\) and define a strong continuous analytic semigroup. Secondly, the existence of the \((H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\times H^{1}_{\textrm{lu}}({\mathbb {R}}^N),H^{1}_{\rho }({\mathbb {R}}^N)\times H^{1}_{\rho }({\mathbb {R}}^N) )\)-global attractor is established. Finally, we obtain the asymptotic regularity of solutions which appear to be optimal and the existence of a bounded subset(in \(H^{2}_{\textrm{lu}}({\mathbb {R}}^N)\times H^{2}_{\textrm{lu}}({\mathbb {R}}^N\))), which attracts exponentially every initial \(H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\times H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\)-bounded set with respect to the \(H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\times H^{1}_{\textrm{lu}}({\mathbb {R}}^N)\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this paper are included within the article.

References

  1. Arrieta, J.M., Cholewa, J.W., Dlotko, T., Rodrguez-Bernal, A.: Dissipative parabolic equations in locally uniform spaces. Math. Nachr. 280, 1643–1663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrieta, J., Carvalho, A.N., Hale, J.K.: A damped hyperbolic equation with critical exponent. Commun. Partial Differ. Equ. 17, 841–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of partial differential evolution equations in an unbounded domain. Proc. R. Soc. Edinb. Sect. A 116, 221–243 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Nakua, Moscow (1989). [English translation, North Holland (1992)]

  5. Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comput. Phys. Commun. 13, 149–155 (1977)

    Article  Google Scholar 

  6. Cholewa, J.W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  7. Cholewa, J.W., Dlotko, T.: Strongly damped wave equation in uniform spaces. Nonlinear Anal. TMA 64, 174–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cholewa, J.W., Dlotko, T.: Hyperbolic equations in uniform spaces. Bull. Pol. Acad. Sci. Math. 52, 249–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cholewa, J.W., Dlotko, T.: Bi-spaces global attractors in abstract parabolic equations. Evol. Equ. Banach Center Publ. 60, 13–26 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Carvalho, A.N., Cholewa, J.W.: Local well posedness for strongly damped wave equations with critical nonlinearities. Bull. Aust. Math. Soc. 66, 443–463 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carvalho, A.N., Cholewa, J.W.: Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Trans. Am. Math. Soc. 361(5), 2567–2586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carvalho, A.N., Cholewa, J.W.: Attractors for strongly damped wave equations with critical nonlinearities. Pac. J. Math. 207, 287–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carvalho, A.N., Cholewa, J.W., Dlotko, T.: Strongly damped wave problems: bootstrapping and regularity of solutions. J. Differ. Equ. 244, 2310–2333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clarkson, P.A., Leveque, R.J., Saxton, R.A.: Solitary wave interaction in elastic rods. Stud. Appl. Math. 75, 95–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conti, M., Pata, V.: On the regularity of global attractors. Discret. Contin. Dyn. Syst. 25, 1209–1217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Efendiev, M.A., Zelik, S.V.: The attractor for a nonlinear reaction–diffusion system in an unbounded domain. Commun. Pure Appl. Math. 54, 625–688 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabrie, P., Galushinski, C., Miranville, A., Zelik, S.: Uniform exponential attractors for a singular perturbed damped wave equation. Discret. Contin. Dyn. Syst. 10, 211–238 (2004)

    Article  MATH  Google Scholar 

  18. Jones, R., Wang, B.: Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms. Nonlinear Anal. Real World Appl. 14(3), 1308–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kano, T., Nishida, T.: A mathematical justification for Korteweg–de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math. 23, 389–413 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Makhankov, V.G.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50, 42–44 (1974)

    Article  Google Scholar 

  21. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  22. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. Handb. Differ. Equ. Evolut. Equ. 4(08), 103–200 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Robinson, C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  24. Sun, C., Yang, L., Duan, J.: Asymptotic behavior for a semilinear second order evolution equation. Tran. Am. Math. Soc. 363(11), 6085–6109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physic. Springer, New York (1997)

    Book  MATH  Google Scholar 

  26. Wang, S., Chen, G.: The Cauchy problem for the generalized IMBq equation in \(W^{s, p}({\mathbb{R}}^n)\). J. Math. Anal. Appl. 266, 38–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xie, Y., Zhong, C.: The existence of global attractors for a class nonlinear evolution equation. J. Math. Anal. Appl. 336, 54–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xie, Y., Zhong, C.: Asymptotic behavior of a class of nonlinear evolution equations. Nonlinear Anal. TMA 71, 5095–5105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, M., Sun, C.: Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity. Trans. Am. Math. Soc. 361, 1069–1101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zelik, S.V.: Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun. Pure Appl. Anal. 3, 921–934 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zelik, S.V.: The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discret. Contin. Dyn. Syst. 7(3), 593–641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, F.H., Wang, S., Wang, L.: Robust exponential attractors for a class of non-autonomous semi-linear second-order evolution equation with memory and critical nonlinearity. Appl. Anal. 98(6), 1052–1084 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, F.H., Chen, X.: Pullback attractors for a class of semilinear second-order nonautonomous evolution equations with hereditary characteristics. J. Math. 2022, 1–11 (2022)

Download references

Funding

This work was supported by the Gansu Province Higher Education Innovation Fund project [Grant no. 2022B-397].

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Fang-hong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The authors declare that they did not submit the manuscript to more than one journal for simultaneous consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Gansu Province Higher Education Innovation Fund Project [Grant no. 2022B-397].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Fh. Bi-space Global Attractors for a Class of Second-Order Evolution Equations with Dispersive and Dissipative Terms in Locally Uniform Spaces. Mediterr. J. Math. 20, 219 (2023). https://doi.org/10.1007/s00009-023-02425-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02425-y

Keywords

Mathematics Subject Classification

Navigation