Skip to main content
Log in

Families of Inverse Functions: Coefficient Bodies and the Fekete–Szegö Problem

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish the coefficient bodies for a wide class of families of inverse functions. We also completely describe functions that are boundary points of these bodies in small dimensions. We use this to obtain sharp bounds for the Fekete–Szegö functionals over some classes of functions defined by quasi-subordination as well as over classes of their inverses. As a biproduct, we derive a formula for ordinary Bell polynomials that seems to be new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, J.H., Kim, Y.C., Sugawa, T.: A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 59, 707–727 (2007)

    Article  Google Scholar 

  2. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht (1974)

    Book  Google Scholar 

  3. Elin, M., Jacobzon, F.: Coefficient body for nonlinear resolvents. Ann. UMCS LXXIV, 41–53 (2020)

    MATH  Google Scholar 

  4. Fekete, M., Szegö, G.: Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 8, 85–89 (1933)

    Article  MathSciNet  Google Scholar 

  5. Hayman, W.K.: On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc., 77–94 (1966)

  6. Kanas, S.: An unified approach to the Fekete–Szegö problem. Appl. Math. Comput. 218, 8453–8461 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Kapoor, G.P., Mishra, A.K.: Coefficient estimates for inverses of starlike functions of positive order. J. Math. Anal. Appl. 329, 922–934 (2007)

    Article  MathSciNet  Google Scholar 

  8. Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc Am. Math. Soc. 20, 8–12 (1969)

    Article  MathSciNet  Google Scholar 

  9. Kowalczyk, B., Lecko, A., Srivastava, H.M.: A note on the Fekete–Szegö problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. Nouvelle Sér. 115, 143–149 (2017)

    Article  Google Scholar 

  10. Lecko, A., Kowalczyk, B., Kwon, O.S., Cho, Nak: The Fekete–Szegö problem for some classes of analytic functions. J. Comput. Anal. Appl. 24, 1207–1231 (2018)

    MathSciNet  Google Scholar 

  11. Li, M., Sugawa, T.: Schur parameters and the Carathéodory class. Results Math. 74, 185 (2019). https://doi.org/10.1007/s00025-019-1107-7

    Article  MATH  Google Scholar 

  12. Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex functions. Proc. Am. Math. Soc. 85(2), 225–230 (1982)

    Article  MathSciNet  Google Scholar 

  13. Löwner, C.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. J. Math. Ann. 89, 103–121 (1923)

    Article  Google Scholar 

  14. Ma, W.C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), pp. 157–169. Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge (1994)

  15. Peng, Z.: On the Fekete–Szegö problem for a class of analytic functions. ISRN Math. Analysis, 1–4 (2014)

  16. Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  17. Pommerenke, Ch.: On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 41, 111–122 (1966)

    Article  MathSciNet  Google Scholar 

  18. Robertson, M.S.: Quasi-subordination and coefficient conjectures. Bul. Am. Math. Soc. 76, 1–9 (1970)

    Article  MathSciNet  Google Scholar 

  19. Schur, I.: Methods in Operator Theory and Signal Processing. Operator Theory: Adv. and Appl., vol. 18. Birkhäuser Verlag, Basel (1986)

    Google Scholar 

  20. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Colloquium Publications. Amer. Math. Society, Providence (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiana Jacobzon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elin, M., Jacobzon, F. Families of Inverse Functions: Coefficient Bodies and the Fekete–Szegö Problem. Mediterr. J. Math. 19, 93 (2022). https://doi.org/10.1007/s00009-022-02017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02017-2

Keywords

Mathematics Subject Classification

Navigation