Skip to main content
Log in

On Existence and Uniqueness of Formal Power Series Solutions of Algebraic Ordinary Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given an algebraic ordinary differential equation (AODE), we propose a computational method to determine when a truncated power series can be extended to a formal power series solution. If a certain regularity condition on the given AODE or on the initial values is fulfilled, we compute all of the solutions. Moreover, when the existence is confirmed, we present the algebraic structure of the set of all formal power series solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschenbrenner, M., Van den Dries, L., van der Hoeven, J.: Asymptotic Differential Algebra and Model Theory of Transseries, vol. 358. Princeton University Press, Princeton (2017)

    Book  Google Scholar 

  2. Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, E.: A Sedoglavic. Fast computation of power series solutions of systems of differential equations. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 1012–1021, New Orleans, Louisiana, USA (2007)

  3. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM 25, 581–595 (1978)

    Article  MathSciNet  Google Scholar 

  4. Briot, C.A., Bouquet, J.C.: Propriétés des fonctions définies par des équations différentielles. Journal de l’Ecole Polytechnique 36, 133–198 (1856)

    Google Scholar 

  5. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier, Amsterdam (2000)

    Google Scholar 

  6. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 429–480 (2004)

    Article  Google Scholar 

  7. Cano, J.: The newton polygon method for differential equations. In Proceedings of the 6th International Conference on Computer Algebra and Geometric Algebra with Applications, IWMM’04/GIAE’04. Springer, Berlin, , pp. 18–30 (2005)

  8. Cano, J., Fortuny, P.: The space of generalized formal power series solution of an ordinary differential equations. Astérisque 323, 61–82 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Cano, J., Falkensteiner, S., Sendra, J.R.: Existence and convergence of puiseux series solutions for first order autonomous differential equations. preprint, (2019). online available under arXiv:1908.09196

  10. Della Dora, J., Richard-Jung, F.: About the newton algorithm for non-linear ordinary differential equations. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC ’97, ACM, pp. 298–304, New York, NY, USA, (1997)

  11. Dragović, V., Goryuchkina, I.: The Fine-Petrović polygons and the Newton-Puiseux method for algebraic ODEs. Bull. Am. Math. Soc. (2019)

  12. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations. Mathematische Annalen 267, 213–238 (1984)

    Article  MathSciNet  Google Scholar 

  13. Falkensteiner, S., Sendra, J.R.: Formal power series solutions of first order autonomous algebraic ordinary differential equations. Math. Comput. Sci. (2019) (to appear)

  14. Fine, H.: On the functions defined by differential equations, with an extension of the Puiseux Polygon construction to these equations. Am. J. Math. XI, 317–328 (1889)

    Article  MathSciNet  Google Scholar 

  15. Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: Proceedings of the 5th ACM Symposium Theory of Computing, vol 9, pp 67–72 (1974)

  16. Grigoriev, D.Y., Singer, M.: Solving ordinary differential equations in terms of series with real exponents. Trans. AMS 327, 329–351 (1991)

    Article  MathSciNet  Google Scholar 

  17. van der Hoeven, J.: Computing with D-algebraic power series. Appl. Algebra Eng. Commun. Comput. 30(1), 17–49 (2019)

    Article  MathSciNet  Google Scholar 

  18. van der Hoeven, J.: Effective power series computations. Technical report, HAL (2014) http://hal.archives-ouvertes.fr/hal-00979357

  19. van der Hoeven, J.: Faster relaxed multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14), Kobe, Japan, pp. 405–412 (2014)

  20. van der Hoeven, J.: Transseries and Real Differential Algebra, vol. 1888. Springer, New York (2006)

    Book  Google Scholar 

  21. Hurwitz, A.: Sur le développement des fonctions satisfaisant à une équation différentielle algébrique. Annales scientifiques de l’École Normale Supérieure 6(3), 327–332 (1889)

    Article  MathSciNet  Google Scholar 

  22. Kauers, M., Paule, P.: The Concrete Tetrahedron. Springer, Berlin (2010)

    MATH  Google Scholar 

  23. Limonov, M.A.: Generalized separants of differential polynomials. Moscow Univ. Math. Bull. 70(6), 248–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ritt, J.F.: Differential Algebra, vol. 33. American Mathematical Society, New York (1950)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gleb Pogudin and François Boulier for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu N. Vo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2019.06; supported by the Austrian Science Fund (FWF): P 31327-N32; the UTD start-up grant: P-1-03246, the Natural Science Foundation of USA grants CCF-1815108 and CCF-1708884; XJTLU Research Development Funding RDF-20-01-12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkensteiner, S., Zhang, Y. & Vo, T.N. On Existence and Uniqueness of Formal Power Series Solutions of Algebraic Ordinary Differential Equations. Mediterr. J. Math. 19, 74 (2022). https://doi.org/10.1007/s00009-022-01984-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-01984-w

Keywords

Mathematics Subject Classification

Navigation