Skip to main content
Log in

Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give some formulas of poly-Cauchy numbers by the r-Stirling transform. In the case of the classical or poly-Bernoulli numbers, the formulas are with Stirling numbers of the first kind. In our case of the classical or poly-Cauchy numbers, the formulas are with Stirling numbers of the second kind. We also discuss annihilation formulas for poly-Cauchy number with negative indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyadzhiev, K.N.: New identities with Stirling, hyperharmonic, and derangement numbers, Bernoulli and Euler polynomials, powers, and factorials. J. Combin. Number Theory 11(1), 43–58 (2020). arXiv:2011.03101

    Google Scholar 

  2. Broder, A.Z.: The \(r\)-Stirling numbers. Discrete Math. 49, 241–259 (1948)

    Article  Google Scholar 

  3. Can, M., Dağlı, M.C.: Extended Bernoulli and Stirling matrices and related combinatorial identities. Linear Algebra Appl. 444, 114–131 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cheon, G.-S., El-Mikkawy, M.E.A.: Generalized harmonic numbers with Riordan arrays. J. Number Theory 128, 413–425 (2008)

    Article  MathSciNet  Google Scholar 

  5. Comtet, L.: Advanced Combinatorics. Riedel, Dordrecht (1974)

    Book  Google Scholar 

  6. Gould, H.W.: Series transformations for finding recurrences for sequences. Fibonacci Q. 28, 166–171 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Howard, F.T.: Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162, 175–185 (1996)

    Article  MathSciNet  Google Scholar 

  8. Kamano, K., Komatsu, T.: Poly-Cauchy polynomials. Mosc. J. Combin. Number Theory 3, 181–207 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Kargin, L.: On Cauchy numbers and their generalizations. Gazi Univ. J. Sci. 33(2), 456–474 (2020)

    Article  Google Scholar 

  10. Kargin, L., Cenkci, M., Dil, A., Can, M.: Generalized harmonic numbers via poly-Bernoulli polynomials. arXiv:2008.00284 (2020)

  11. Kargin, L., Can, M.: Harmonic number identities via polynomials with \(r\)-Lah coefficients. C. R. Math. Acad. Sci. Paris 358(5), 535–550 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Komatsu, T.: Poly-Cauchy numbers. Kyushu Math. J. 67, 143–153 (2013)

    Article  MathSciNet  Google Scholar 

  13. Komatsu, T.: Poly-Cauchy numbers with a \(q\) parameter. Ramanujan J. 31, 353–371 (2013)

    Article  MathSciNet  Google Scholar 

  14. Komatsu, T.: Some recurrence relations of poly-Cauchy numbers. J. Nonlinear Sci. Appl. 12, 829–845 (2019). https://doi.org/10.22436/jnsa.012.12.05

    Article  MathSciNet  Google Scholar 

  15. Komatsu, T., Szalay, L.: Shifted poly-Cauchy numbers. Lith. Math. J. 54(2), 166–181 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ohno, Y., Sasaki, Y.: Recurrence formulas for poly-Bernoulli polynomials. Adv. Stud. Pure Math. 84, 353–360 (2020). https://projecteuclid.org/euclid.aspm/1590597094

  17. Ohno, Y., Sasaki, Y.: Recursion formulas for poly-Bernoulli numbers and their applications. Int. J. Number Theory 17(1), 175–189 (2021)

    Article  MathSciNet  Google Scholar 

  18. Rahmani, M.: Generalized Stirling transform. Miskolc Math. Notes 15(2), 677–690 (2014)

    Article  MathSciNet  Google Scholar 

  19. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://www.oeis.org (2022)

  20. Spivey, M.Z.: Combinatorial sums and finite differences. Discrete Math. 307, 3130–3146 (2007)

    Article  MathSciNet  Google Scholar 

  21. Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete Math. 132, 267–290 (1994)

    Article  MathSciNet  Google Scholar 

  22. Wang, W., Jia, C.: Harmonic number identities via the Newton–Andrews method. Ramanujan J. 35(2), 263–285 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee for careful reading of the manuscript and making useful comments from a broader perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Komatsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T. Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform. Mediterr. J. Math. 19, 37 (2022). https://doi.org/10.1007/s00009-021-01960-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01960-w

Keywords

Mathematics Subject Classification

Navigation